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Abstract
We present an age-structured model for erythropoiesis in which the mortality of 
mature cells is described empirically by a physiologically realistic probability dis-
tribution of survival times. Under some assumptions, the model can be transformed 
into a system of delay differential equations with both constant and distributed 
delays. The stability of the equilibrium of this system and possible Hopf bifurcations 
are described for a number of probability distributions. Physiological motivation and 
interpretation of our results are provided.

Keywords  Erythropoiesis · Age-structured models · Delay-differential equations · 
Stability · Hopf bifurcation

1  Introduction

Haematopoiesis is the process by which stem cells differentiate and proliferate to sup-
ply the body with erythrocytes, platelets, neutrophils, macrophages, and many other 
specialized cells. These cells perform a number of body vital functions, and their pro-
duction must therefore be carefully regulated. Changes in physiological conditions, 
such as the loss of blood due to a blood donation, a substantial hemorrhage, or lifestyle 
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changes such as excursion in high altitude or high intensity training, must be accounted 
for in the control of the cells.

Erythropoiesis, the production of red blood cells (RBCs), is a hierarchical pro-
cess (Kaushansky et  al. 2015; Wazewska-Csyzewska 1984): haematopoietic stem 
cells first differentiate into burst-forming units (BFU-Es), a self-sustaining popula-
tion of cells responding to erythropoietin (Epo), the hormone that both stimulates 
reproduction of BFU-Es and causes further differentiation into colony-forming units 
(CFU-Es). From these, a series of cell divisions and proliferation produces proeryth-
roblasts, basophilic erythroblasts, etc. until the stage of reticulocytes is reached, 
when cells then stop dividing and simply mature by increasing their hemoglobin 
content. Once reticulocytes have in turn matured enough, they lose their nuclei and 
then migrate to the blood stream from the bone marrow, where all previous steps 
take place. All stages of the maturation process are influenced by Epo, via a feed-
back mechanism rooted on monitoring of partial pressure of oxygen in the blood by 
a population of cells near the kidney.

Mathematical modeling of erythropoiesis has been an active area of research, sig-
nificant efforts employing stage-structured models (Mahaffy et al. 1998), but other 
approaches having been used as well (Eymard et al. 2015 and references therein). 
In all cases, attention is given to the biological determination of the precise mecha-
nisms of each of the steps in the production and control of erythrocytes: in particu-
lar, their maturation and aging, and the processes involved in the clearance of RBCs 
is of current interest (Arias 2017; Kaestener and Bogdanova 2014; Lang et al. 2012), 
as different mathematical formulations lead to different predictions regarding stabil-
ity of equilibria (Bélair et al. 1995; Mahaffy et al. 1998). The work presented here 
follows this line of inquiries: we construct an age-structured model, simplifying the 
numerous erythropoietic steps by regrouping all cells into one of two compartments, 
which we label “precursor” and “mature”. The aging process in each of the compart-
ments, as well as the transition between compartments and the death of mature cells, 
is described phenomenologically using a framework more common in demography 
than physiology: cells are considered as “individuals”.

Although it is common wisdom that RBCs live for about 120 days (Kaushansky 
et al. 2015), there is evidence that this lifespan is not exactly the same for all cells, 
but rather follows a distribution of ages (Shemin and Rittenberg 1946). Our motiva-
tion for the current formulation derives from a desire to understand the origin of this 
distribution, and attempt to pinpoint possible mechanisms influencing its properties.

2 � Age‑Structured Models for Haematopoiesis

We consider an age-structured population of erythrocytes that distinguish between 
precursor and mature cells. Let p(t,�) and m(t, �) be respectively the densities of 
precursor and mature cells, and let �(�) and �(�) be respectively the birth rate of 
precursor cells and the death rate of mature cells. The aging process of all cells is 
then described by the following system of quasi-linear first-order hyperbolic partial 
differential equations (PDEs): 
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where �F is the maximal maturity level of precursor cells. Along with the system 
(2.1) two boundary conditions must be formulated to account for the recruitment of 
precursor cells from the undifferentiated stem cells and the transition from precursor 
to mature cells,

where E(t) is the time-dependent concentration of Epo, regulated by the total mature 
cell population through a negative feedback loop.

Following Bélair et  al. (1995) and Mahaffy et  al. (1998), we model the feedback 
function as a nonlinear Hill function defined by,

where M(t) is the total population of mature cells. Now, if k is the per capita elimina-
tion rate of Epo, then an evolution equation for the hormone concentration is given 
by

Using the method of characteristics for first-order advection PDEs, we find that the 
large-time solution of the system (2.1) is given by

Following (Mahaffy et al. 1998), we suppose that the population of precursor cells 
grows exponentially until a certain threshold �1 is reached, giving the following prolif-
eration rate,

Such an assumption yields the following expression for the density of mature cells

(2.1a)
𝜕p

𝜕t
+

𝜕p

𝜕𝜇
= 𝛽(𝜇)p, t > 0, 0 < 𝜇 < 𝜇F,

(2.1b)
𝜕m

𝜕t
+

𝜕m

𝜕𝜈
= −𝛾(𝜈)m, t > 0, 0 < 𝜈 < ∞,

(2.2)p(t, 0) = S0(E(t)), m(t, 0) = p(t,�F),

(2.3)F(M) =
a

1 + KMr
, M(t) =

∞

∫
0

m(t, �)d�,

(2.4)
dE(t)

dt
= F(M(t)) − kE(t).

(2.5)

p(t,�) =S0(E(t − �)) exp

⎛
⎜⎜⎝

�

∫
0

�(�)d�

⎞
⎟⎟⎠
,

m(t, �) =p(t − �,�F) exp

⎛⎜⎜⎝
−

�

∫
0

�(�)d�

⎞⎟⎟⎠
.

(2.6)𝛽(𝜇) =

{
𝛽 𝜇 < 𝜇1

0 𝜇 ≥ 𝜇1

.
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We also suppose that the recruitment function S0(E) linearly increases with the level 
of hormone Epo.

Our goal is to investigate the effect of an age-dependent mortality rate �(�) on the 
stability of a population of erythrocytes at equilibrium. For this purpose, we let N be a 
random variable modeling the survival times of mature erythrocytes that follows a cer-
tain probability distribution with density function f (�) and distribution function F(�) . 
The mortality rate, or hazard function, is defined as

where the quantity l(�) = 1 − F(�) is the survival function, which is the probability 
of living longer than a certain age � . Hence, given a certain mortality rate function 
�(�) , it is possible to completely determine the associated survival times probability 
distribution, and expressions for the survival and probability density functions are 
obtained to be,

from which we can readily establish that

For the purpose of our study, we choose a mortality rate �(�) which increases expo-
nentially as a function of the maturity level,

Such a choice yields the following expressions for the survival function and the 
probability density function

We notice that the maturity level �F corresponds to the inflection point of the sur-
vival function, and thus to the maximal point of the probability density function. 
Finally, the expected value of the distribution E(N) is readily computed as,

(2.7)m(t, �) = e��1S0(E(t − � − �F)) exp

⎛
⎜⎜⎝
−

�

∫
0

�(�)d�

⎞
⎟⎟⎠
.

(2.8)�(�) =
f (�)

l(�)
= −

d

d�
log(l(�)),

(2.9)l(�) = exp

⎛⎜⎜⎝
−

�

∫
0

�(s)ds

⎞⎟⎟⎠
, f (�) = �(�) exp

⎛⎜⎜⎝
−

�

∫
0

�(s)ds

⎞⎟⎟⎠
,

(2.10)

∞

∫
0

f (�)d� = 1.

(2.11)𝛾(𝜈) = 𝜃e𝜃(𝜈−𝜈F), 𝜃, 𝜈F > 0.

(2.12)
l(�) = exp

(
e−��F − e�(�−�F)

)
, f (�) = � exp

(
�(� − �F) + e−��F − e�(�−�F)

)
.
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where E1(z) is the exponential integral function. Numerical quadrature is also 
required to compute the variance of the distribution Var(N) , defined as

The main properties of the distribution are plotted in Figs.  1,  2 and  3. We also 
remark that in the limit where the shape parameter � approaches infinity, the distri-
bution converges to a Dirac distribution centered in �F.

(2.13)E(N) =

∞

∫
0

l(𝜈)d𝜈 =
ee

−𝜃𝜈F

𝜃
E1(e

−𝜃𝜈F ), E1(z) =

∞

∫
z

e−𝜎

𝜎
d𝜎, z > 0,

(2.14)Var(N) = 2

∞

∫
0

�l(�)d� −

⎡⎢⎢⎣

∞

∫
0

l(�)d�

⎤⎥⎥⎦

2

.

(2.15)lim
𝜃→∞

𝛾(𝜈) = lim
𝜃→∞

f (𝜈) = 𝛿(𝜈 − 𝜈F), lim
𝜃→∞

l(𝜈) =

{
1 𝜈 ≤ 𝜈F
0 𝜈 > 𝜈F
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Fig. 1   Parameter values are �
F
= 120 and � = 0.1, 0.25, 0.5
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Fig. 2   Numerically computed expected survival times for different �
F
 and � values. In the middle panel, 

we notice that for a fixed �
F
= 120 , E(N) approaches �

F
 as the shape parameter � increases. The right 

panel shows a linearly positive correlation between E(N) and �
F
 for a fixed � = 0.1
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3 � System of Delay Differential Equations

Integrating Eq. (2.7) over all ages, we readily obtain an integro-differential system for 
the total population of mature cells and its regulatory hormone as 

which can be rewritten as a single equation for the regulatory hormone as,

Differentiating Eq. (3.1a) with respect to time and after integration by part, it is pos-
sible to obtain the following two-delay system: 

where the fixed delay corresponds to the age level at which precursor erythrocytes 
become mature, while the distributed delay accounts for the variable age of death of 
mature erythrocytes. In the limit where the survival times are all the same for each 

(3.1a)M(t) =

∞

∫
0

e��1S0(E(t − � − �F))l(�)d�,

(3.1b)
dE(t)

dt
= F(M(t)) − kE(t),

(3.2)
dE(t)

dt
= F

⎛⎜⎜⎝

∞

∫
0

e��1S0(E(t − � − �F))l(�)d�

⎞⎟⎟⎠
− kE(t).

(3.3a)
dM(t)

dt
= e��1S0(E(t − �F)) −

∞

∫
0

e��1S0(E(t − � − �F))f (�)d�,

(3.3b)
dE(t)

dt
= F(M(t)) − kE(t),
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Fig. 3   Numerically computed variance for different �
F
 and � values. The left and middle panels suggest 

Var(N) to be inversely proportional to the shape parameter � . Conversely, for a fixed � = 0.1 , the variance 
initially increases as a function of �

F
 before reaching a plateau
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erythrocyte, the distribution approaches a Dirac distribution and the second delay is 
simply reduced to a discrete delay as 

3.1 � Linear Stability Analysis

Let (Me,Ee) be the total population and hormone level at equilibrium. After substitu-
tion into Eq. (3.3), we obtain that

and thus for every Me > 0 , there exists a steady state solution of Eq. (3.3) for which 
the hormone concentration is given by (3.5). Such a translation invariance property 
of system (3.3) is a result of the time differentiation. Hence, from Eq. (3.1a) we 
readily establish that the total population of red blood cells at equilibrium satisfies

Next, we substitute (3.6) into (3.5) and obtain a single nonlinear algebraic equation 
for the steady state population,

which possesses a unique solution Me > 0 since the nonlinear Hill function is 
decreasing while S�

0
(Ee) , the slope of the recruitment function, is strictly positive.

We can now proceed to a linear stability analysis by considering the following per-
turbation of the steady state solution,

where � ∈ ℂ is the eigenvalue parameter while (�, �)T ∈ ℂ
2 is the associated eigen-

vector. Inserting (3.8) into (3.3) and collecting coefficients of e�t after linearization 
around the steady state yields the following linear homogeneous system

(3.4a)
dM(t)

dt
= e��1

(
S0(E(t − �F)) − S0(E(t − �F − �F))

)
,

(3.4b)
dE(t)

dt
= F(M(t)) − kE(t).

(3.5)Ee =
F(Me)

k
,

(3.6)Me = e��1S�
0
(Ee)Ee

∞

∫
0

l(�)d�.

(3.7)F(Me) −
kMe

e��1S�
0
(Ee) ∫ ∞

0
l(�)d�

= 0,

(3.8)
(
M(t)

E(t)

)
=

(
Me

Ee

)
+

(
�

�

)
e�t,

(3.9)
⎛⎜⎜⎝

𝜆 − e𝛽𝜇1S�
0
(Ē)e−𝜆𝜇F

�
1 −

∞∫
0

e−𝜆𝜈 f (𝜈)d𝜈

�

−F�(M̄) 𝜆 + k

⎞⎟⎟⎠

�
𝜉

𝜂

�
=

�
0

0

�
.
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For a non-trivial solution to exist, the system (3.9) must be singular and thus the 
eigenvalue parameter must satisfy a transcendental equation given by

where A = −e𝛽𝜇1S�
0
(Ee)F

�(Me) > 0 is the gain in the nonlinear feedback loop 
between the total population of mature cells and the regulatory hormone Epo. We 
remark that f̂ (𝜆) = ∫ ∞

0
e−𝜆𝜈 f (𝜈)d𝜈 in Eq. (3.10) is the Laplace transform of the 

probability density function f (�).
We notice that since f̂ (0) = 1 , Eq. (3.10) always possesses a root at the origin, which 

is a consequence of the translation invariance of steady state solutions. However, we 
can factor out the zero-eigenvalue simply by integrating by part the Laplace transform 
of the probability density function, which yields

where l̂(𝜆) is the Laplace transform of the survival function. We also notice that the 
equation obtained in (3.11) exactly corresponds to the transcendental equation asso-
ciated with the linearization of the integro-differential system (3.2).

Next, we consider the case for which the mortality rate function is given by (2.11) 
and investigate the loss of stability of the steady state. First, we readily notice that the 
only way this can happen is through a Hopf bifurcation, since substituting � = 0 in 
(3.11) yields a negative gain in the feedback loop

which is not possible. To determine the occurrence of a Hopf bifurcation, we substi-
tute � = i� in (3.11) and upon separating the equation into real and imaginary parts, 
we obtain the following system: 

Our goal is to investigate how the parameters A, �F and � affect the stability of the 
equilibrium. Recall that �F corresponds to the maximal point of the probability den-
sity function f (�) , while the shape parameter � controls the variance. Also, in the 
limit where � → ∞ , each mature erythrocyte dies at age �F and the distribution of 
survival times approaches a Dirac distribution. Upon computing the Laplace trans-
form of the probability density function for such a limiting case, we obtain a simpli-
fied transcendental equation given by

(3.10)𝜆(𝜆 + k) + Ae−𝜆𝜇F

(
1 − f̂ (𝜆)

)
= 0,

(3.11)g(𝜆) ≡ 𝜆 + k + Ae−𝜆𝜇F l̂(𝜆) = 0,

(3.12)A = −
k

l̂(0)
< 0,

(3.13a)
k + A

⎛⎜⎜⎝
cos(��F)

∞

∫
0

cos(��)l(�)d� − sin(��F)

∞

∫
0

sin(��)l(�)d�

⎞⎟⎟⎠
= 0,

(3.13b)
� − A

⎛⎜⎜⎝
cos(��F)

∞

∫
0

sin(��)l(�)d� + sin(��F)

∞

∫
0

cos(��)l(�)d�

⎞⎟⎟⎠
= 0.
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For both cases where the survival times are distributed and constant, the nonlineari-
ties inherent to the transcendental equation make it impossible to derive an explicit 
expression for the Hopf stability boundaries in the plane of parameters (�F,A) . We 
use the software package coco (Dankowicz and Schilder 2013) to compute a param-
eterization of those curves by the frequency �.

Two different sets of parameters, corresponding to a normal human subject and 
to a rabbit with a certain periodic hematological disease, are considered here and 
given in Table 1. We keep �F and � as bifurcation parameters, and mention that for a 
normal human the lifespan of mature erythrocytes is approximately 120 days, while 
for a rabbit it is approximately 50 days (Bélair et al. 1995; Mahaffy et al. 1998). Fur-
thermore, we do not directly solve Eq. (3.7) for a population at equilibrium Me since 
the slope of the recruitment function e��1S�

0
(Ee) is unknown. Instead, given a certain 

population at equilibrium taken from Table 1, we can compute the slope as

Finally, we use this expression to parameterize a curve of equilibrium in a 2-D space 
of bifurcation parameters. That is, we can express the gain in the feedback loop as a 
function of �F (or �),

 Hence, we have reduced the number of true bifurcation parameters to a single bifur-
cation parameter arising directly in the mortality rate function.

Several stability diagrams in the plane of the parameters �F and A are shown 
below. In Fig. 4 the fixed parameters correspond to a normal human subject, while 
in Fig.  5 they correspond to a rabbit with anemia. For each case, we investigate 
the effect of increasing the shape parameter � and remark that the linear stability 
region shrinks as the distribution of survival times approaches a Dirac distribution. 
This once again shows that distributed delays, as opposed to their discrete analogs, 

(3.14)�(� + k) + Ae−��F

(
1 − e−��F

)
= 0.

(3.15)e��1S�
0
(Ee) =

kMe

F(Me) ∫ ∞

0
l(�)d�

.

(3.16)A = −
kMeF

�(Me)

F(Me) ∫ ∞

0
l(�)d�

.

Table 1   Two different sets of 
parameter values, taken from 
Bélair et al. (1995) and Mahaffy 
et al. (1998)

Normal human Rabbit with anemia

K 0.0382 0.0382
a (mU/ml/day) 6570 15600
r 6.96 6.96
k (day−1) 2.8 6.65
�
F
 (days) 6 3

M
e

(
×1011

erythrocytes

kg body mass

)
3.5 2.63
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enhance stability (Smith 2011). We also notice from Figs. 4 and 5 that the stabil-
ity diagrams for � = 0.5 resemble closely the stability diagrams associated with the 
Dirac distribution. However, letting � = 0.1 yields qualitatively different diagrams 
containing a single curve, which can self-intersect for large �F values (see the first 
panel of Fig. 4). This indicates the presence of codimension-two double-Hopf bifur-
cation points, a typical instabilities of systems with multiple delays (Bélair and 
Campbell 1994; Stépán 1989). We expect the steady state to be unstable within 
each loop, since the purely imaginary eigenvalues will generically cross the imagi-
nary axis, and thus, starting from the left-hand half-plane, will enter the right-hand 
half-plane. This has been numerically verified using the argument principle from 
complex analysis to count the number of roots of g(�) = 0 in the right half-plane 
ℜ(𝜆) > 0 (details not shown).

(a) θ = 0.1
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(b) θ = 0.5 (c) Dirac distribution (θ → ∞).

Fig. 4   Hopf stability boundaries in the plane of parameters (�
F
,A) for three different values of � . On each 

red curve, the linearization possesses purely imaginary eigenvalues. Other parameter values are �
F
= 6 

and k = 2.8 , and are taken from the first column of Table 1. The equilibrium curve (black) is computed 
directly from (3.16) and the region of linear stability is located under the lowermost red curve. (Color 
figure online)
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(a) θ = 0.1 (b) θ = 0.5 (c) Dirac distribution (θ ).

Fig. 5   Hopf stability boundaries in the plane of parameters (�
F
,A) for three different values of � . On each 

red curve the linearization possesses purely imaginary eigenvalues. Other parameter values are �
F
= 3 

and k = 6.65 , and are taken from the second column of Table 1. The equilibrium curve (black) is com-
puted directly from (3.16) and the region of linear stability is located under the lowermost red curve. 
(Color figure online)
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3.2 � Numerical Simulations

In this section, we perform simulations to illustrate how the system behaves in the 
various parameter regimes identified in Figs. 4 and 5. Rather than solving the sys-
tem of delay differential Eq. (3.3), for which the presence of a distributed delay 
makes it impossible to use any black-box DDE solver, we directly solve the inte-
gro-differential Eq. (3.2) employing a mixed collocation method (Brunner et  al. 
1997; Makroglou and Kuang 2006) that combines a classical implicit second-order 
Runge–Kutta scheme with trapezoidal integration. The details of this method are 
given in Appendix A. In the limiting case for which the model can be reduced to 
a system of delay differential equations having two discrete delays, we employ the 
DDE solver dde23 from Matlab.

We first illustrate the role of the shape parameter � on the stability of the equilib-
rium. More precisely, we address the problem of how quickly does the total popula-
tion of erythrocytes return to its equilibrium level following a blood donation in a 
normal human subject. Such a numerical experiment has also been performed for 
the previous erythropoiesis models of Bélair et al. (1995) and Mahaffy et al. (1998). 
We fix �F = 120 days and numerically solve the system for � = 0.01, 0.1, ∞ , with 
initial and past conditions corresponding to 95% of the total population and hor-
mone level at equilibrium. The results are shown in Fig.  6, where we conclude 
that the distribution of lifespans affects the strength of the oscillatory responses. 
As the shape parameter � decreases, much more damped oscillatory responses are 
observed. In the Dirac distribution case, the discrete delays in the system cause a 
large population of erythrocytes to die exactly after 126 days: these are physiolog-
ically unrealistic, since blood banks allowing repeated blood donations every 56 
days, normal levels are expected to be restored within this time period. We expect 
a normal individual to better regulate its population of erythrocytes, with the distri-
bution of lifespans being a key mechanism behind homeostasis.

We then numerically investigate the onset of oscillations near a Hopf bifurca-
tion as �F , the inflection point of the survival function, decreases. More precisely, 
the shape parameter is taken to be � = 0.1 with the other parameters taken from the 
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Fig. 6   Return to equilibrium level following a blood donation in a normal human subject. Units are ×1011 
erythrocytes per kg of body mass. The values of the other parameters are listed in the first column of 
Table 1
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second column of Table 1. The Hopf bifurcation values predicted by the linear sta-
bility analysis are

where we recall that �0 = ± i�0 is the conjugate pair of purely imaginary eigenval-
ues at the bifurcation point. Moreover, the point in (3.17) exactly corresponds to 
the intersection point between the equilibrium curve (black) and the Hopf stability 
boundary (red) from the first panel of Fig. 5. It is beyond the scope of this study to 
determine the criticality of this Hopf bifurcation. We can nevertheless say that if the 
bifurcation were to be supercritical, then in the weakly nonlinear regime the system 
would branch off from the steady state to a stable limit cycle whose period is closely 
approximated by the linear period, here given by T = 2�∕�0 ≈ 12.2298 days.

Numerical simulations for �F = 50, 15, 14, 13, and 10 days are shown in Fig. 7, 
with these results suggesting a loss of stability through a supercritical Hopf bifurca-
tion within the interval 13 < 𝜈F < 14 . This example also illustrates the complexity 
of systems with multiple discrete and distributed delays. Here, the oscillations arise 
when �F decreases, which is somewhat contrary to the empirical fact in the delay 
differential equations community that small delays are harmless.

Finally, oscillations in the total population of various blood cells are typical of 
a class of diseases known as periodic hematological diseases (Foley and Mackey 
2009). The example studied here suggests the origin of such pathological states to 

(3.17)�F0 ≈ 13.5718, A0 ≈ 3.3963, �0 ≈ 0.51376,
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Fig. 7   Transition to sustained oscillations as �
F
 decreases past a Hopf bifurcation. Other parameters are 

taken from the right column of Table 1. For each simulation, the initial and past conditions correspond 
to a random perturbation of the equilibrium levels. The predicted Hopf bifurcation point is �

F0 ≈ 13.57 . 
In the last panel when �

F
= 10 days and � = 0.1 , the numerically computed oscillatory period is given by 

T ≈ 13.1 days. This is close to the expected age of death, taking into account the 3 days required for pre-
cursor cells to reach the mature population
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be potentially linked to the average survival time of mature erythrocytes decreasing 
under some critical threshold.

4 � Discussion

In this work, we have incorporated elements from survival analysis into an age-
structured model for erythropoiesis. The novel aspect of this model is the survival 
times of mature erythrocytes that follow some physiologically realistic probability 
distribution for which the aging process increases the probability of death. This con-
trasts with previous modeling efforts which have supposed exponentially distributed 
(memoryless) survival times combined with some finite maximal lifespan (Bélair 
et al. 1995; Mahaffy et al. 1998).

We showed in Sect.  2 how a probability distribution can be recovered directly 
from the mortality rate function. In particular, the mortality rate studied here 
increases exponentially with the age level. The parameters determining this particu-
lar probability distribution consist of the inflection point of the survival function, 
which is a measure of the average lifespan, and of a shape parameter that controls 
the variance. Moreover, in the limit where the shape parameter is very large, the 
probability distribution approaches a Dirac distribution and each mature erythrocyte 
die at the same age level.

In Sect.  3, we first showed how the age-structured model can be ultimately 
reduced to either a single integro-differential equation for the regulatory hormone 
Epo, or to a system of delay differential equations having both a discrete and a 
distributed delays. We recall that the discrete delay accounts for the time required 
for the precursor cells to reach the mature population, while the distributed delay 
accounts for the variable age at which the mature erythrocytes die.

Linear stability analysis and numerical simulations are performed in the remain-
der of Sect. 3. In particular, we have addressed the loss of stability through Hopf 
bifurcations and the occurrence of sustained oscillations in the mature erythrocytes 
population. The bifurcation parameters considered here consist of the inflection 
point of the survival function �F , the shape parameter � and the gain in the negative 
feedback loop A. For increasing values of � , we have obtained a series of stability 
diagrams in the space of parameters defined by �F and A that emphasize the stabiliz-
ing effect of distributed over discrete delays. As expected, the region of linear stabil-
ity shrinks as the shape parameter increases, corresponding to distributions that are 
highly concentrated around the average lifespan.

We first numerically investigated how quickly an erythropoietic system returns 
to its equilibrium level following a blood donation. Our results suggested that for a 
rapid return to equilibrium, the survival times must be widely distributed around the 
mean. We also numerically investigated the loss of stability through a Hopf bifurca-
tion as the inflection point of the survival function (which is also a measure of the 
average lifespan) varies. Both the numerical simulations and the linear stability anal-
ysis suggested the oscillatory regime to be located below some critical threshold. 
From a physiological perspective, this experiment suggests that the early death of 
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mature erythrocytes could potentially be the origin of a class of pathological states 
known as periodic hematological diseases.

Finally, it would be interesting to analyze the model for other probability distri-
butions that are widely used in survival analysis and demography. For example, a 
stochastic model for the survival times of red blood cells was developed in Korell 
et al. (2011), with a bathtub-shaped hazard function leading to an underlying modi-
fied Weibull probability distribution. In addition to the high mortality rate of old 
mature cells, such a distribution also takes into account early mortality potentially 
due to some physiological defects. Hence, it would be worthwhile to combine more 
sophisticated probability distributions with the modeling paradigm developed here.

Funding  Partially supported by the Natural Sciences and Engineering Research Council of Canada 
(NSERC) as a Doctoral Scholarship to FPL and a Discovery Grant to JB.

Appendix A: Numerical Methods

In this section, we briefly describe the numerical methods behind the result of 
Sect. 3.2, which is adapted from Brunner et al. (1997) and Makroglou and Kuang 
(2006). Our goal is to compute a numerical solution to the following integro-differ-
ential equation

on some finite time interval 0 ≤ t ≤ tf  given any constant initial and past hormone 
level E(t) = E0 , with t ≤ 0 . Now let us consider the equidistant mesh tj = jh with 
j = 0,… ,N and h = tf∕N , and let us furthermore suppose that the discrete matura-
tion delay may be written as an integer multiple of the time-step as �F = Lh, L ∈ ℕ . 
Applying a second-order Runge–Kutta scheme alongside with trapezoidal integra-
tion yields a system of 2N equations given by

for the unknowns (Mj,Ej) , j = 1,… ,N . We remark that in Eq. (A.2), Ei−L = E0 if 
i ≤ L while the �i are the usual weights for trapezoidal quadrature defined by,

(A.1)
dE(t)

dt
= F(M(t)) − kE(t), M(t) =

t

∫
−∞

e��1S0(E(� − �F))l(t − �)d�,

(A.2)
Mj = e��1S0(E0)

0

∫
−∞

l(tj − �)d� + h

j∑
i=0

�ie
��1S0(Ei−L)l(tj − ti),

Ej =
2

2 + hk
Ej−1 +

h

2 + hk

(
F(Mj−1) + F(Mj) − kEj−1

)
,

(A.3)𝛼i =

{
1

2
i = 0 or N,

1 0 < i < N.
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Fortunately, the presence of the discrete maturation delay makes it possible to 
explicitly solve the system A.2 given any constant initial and past hormone level E0.
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