
ZEN
ECO-EVOLUTIONARY SOFTWARE

REFERENCE MANUAL

http://www.biologie.ens.fr/ecologie/ecoevolution/legendre/legendre/zen.html

 1

CONTENTS OF ZEN REFERENCE MANUAL

1. Theoretical framework
2. First steps
3. Objects
4. Commands
5. Mathematical functions

Technical notice
Bibliography

CONTENTS OF ZEN DISTRIBUTION

zen.exe ZEN program
qtintf.dll runtime library

zenref.pdf reference manual

model files: population dynamics
allee.zen probability of mating (Møller & Legendre 2001)
arg_esd.zen extinction dynamics for the spider Argiope argentata
met_esd.zen extinction dynamics for the spider Metepeira datona
pass_2s.zen 2-sex model for passerine (Legendre et al. 1999)
regis.zen chaotic dynamics

model files: evolutionary dynamics
cicadas8.zen prime numbers in cicadas
ferriere.zen mutualistic interactions (Ferrière et al. 2002)
ferriere1.zen discretization of continuous time version
kisdi.zen asymmetric competition (Kisdi & Geritz 2001)
nirma.zen adaptive radiation in bacteria
ravigne.zen habitat selection (Ravigné 2001)

INSTALL

• Download self-extracting archive autozen.exe from website.
• Double-click on autozen.exe to expand it inside the zen directory.
• Double-click on any model file *.zen files, open it with the ZEN program zen.exe.
• Drag and drop any model file *.zen to the zen.exe icon will run the ZEN program with the

file as input.

 For PC/Linux and MAC/OSX versions, see p. 47.

Cover. Figure 1. Deployment of polymorphism in a population subjected to asymmetric competition. The
distribution of phenotypes is shown along evolutionary time in ordinates. ZEN simulation, discrete version of a
model from Kisdi & Geritz 2001.

 2

ZEN
ECO-EVOLUTIONARY SOFTWARE

The ZEN computer program is designed to study population dynamics models, with an
evolutionary component in the line of the theory of adaptive dynamics. ZEN handles discrete
time deterministic or stochastic relations with discrete or continuous variables. Its
evolutionary mechanism allows to explore polymorphism in populations from an ecological
point of view.

ZEN performs similarly to an individual-based software: it is in fact ‘phenotype-based’. The
kernel is a symbolic evaluator handling multivalued variables. The ZEN program is
compatible with the ULM program: it lacks the matrix formalism of ULM, but relation-type
ULM models can be run with ZEN.

The biological system under study is described in a text file, the model file, using a reduced
declaration language, and appropriate mathematical functions. When ZEN is run with the
model file as input, the model can be studied interactively, producing numerical results and
graphical representations.

Author
Stéphane Legendre

Laboratoire d’Ecologie, Ecole Normale Supérieure
46 rue d’Ulm, 75230 Paris Cedex 05

France
legendre@ens.fr

Contribution
Nicolas Champagnat, Guillaume Chapron, Jean Clobert, Régis Ferrière, Mathias Gauduchon

Isabelle Olivieri, Virginie Ravigné, Ophélie Ronce, Minus van Baalen

Funding
Action Incitative Bioinformatique

CNRS

The ZEN computer program is distributed free of charge.
Users are under their own responsibility.

 3

1. THEORETICAL FRAMEWORK

Ecology and evolution

Ecological models with an evolutionary component allow to study several biological
phenomena, like sexual selection, host-pathogens interactions, coevolution of plants and
pollinators, mimicry, development of the immune system, evolution of cooperation, evolution
of life history traits, and more generally biodiversity and speciation.

The first evolutionary models in biology are verbal arguments, like Fisher’s proof that the
primary sex ratio is 1/2. Theoretical evolutionary models started to develop in the 80’s with
quantitative genetics (Lande 1982) and game theory (Maynard Smith 1982). In this context
originated the important notion of Evolutionary Stable Strategy (ESS), which had premises in
the work of Hamilton (1963) on kin selection.

Adaptive dynamics

The recent theory of adaptive dynamics (Metz et al. 1996, Dieckmann & Law 1996) is based
on population dynamics. It incorporates implicitly a hereditary mechanism, and allows
studying the evolution of continuous phenotypic traits under the process of mutation-
selection. Selection operates via ecological interactions. The evolutionary outcome of the
system is determined from the persistence of rare mutants with trait s’ in a resident population
with trait s via the fitness gradient

sss
ssf

=∂
∂

''
),'(.

The fitness function f is computed from the ecological setup.

A great achievement of the theory is the classification of the possible evolutionary outcomes
(Geritz et al. 1998), making a synthesis of previous results. For example the notion of CSS
(Continuously Stable Strategy, Eshel and Motro 1981) and ESS could be unified in a single
framework. A fascinating eventuality is that of evolutionary branching (Geritz et al. 1998),
which stems from the biological nature of the models, and does not appear in physical
systems. In this situation, ecological constraints lead to disruptive selection, and possibly to
sympatric speciation (Maynard Smith 1966, Benton & Pearson 2001), by means of assortative
mating (Dieckmann & Doebeli 1999).

In the context of adaptive dynamics, it has been shown by Dieckmann that, on the way to the
evolutionary attractor, evolution can be assumed to proceed by trait substitution, the
population remaining monomorphic in each trait. A canonical (deterministic) equation
accounting for the evolutionary dynamics of traits can be built. The canonical equation has
been placed in a general mathematical framework by Nicolas Champagnat (Champagnat et al.
2001).

However, in the case of evolutionary branching, no equation is known that accounts for the
dynamics of the polymorphic population.

 4

Individual-based models

Individual-based models are appealing in biology because they have the potential to simulate
biological phenomena finely. However, without a strong theoretical background their results
can be difficult to interpret, as a consequence of their inherent stochasticity. Moreover, they
can be memory and time consuming. Another drawback is that they are usually specific:
developing ‘generic’ individual-based programs is a difficult task.

Individual-based programs have been used successfully in adaptive dynamics (Dieckmann &
Law 1996), using a different method than that of ZEN.

The advantage of using simulations is that limitations in the theory of adaptive dynamics can
be relaxed. In the ZEN framework:
• mutations need not be small,
• there are no restrictions on their distributions,
• polymorphism is fully accounted for,
• no fitness function is necessary.

Figure 2. Close up of an evolutionary branching showing the jumps in adaptive trait

(evolutionary time in abscissas, model from Ravigné 2000).

 5

The ZEN program

ZEN simulates the evolution of populations under the mutation-selection process.

Ingredients operated by the ZEN program are:
• Stochastic equations in discrete time describing the dynamics of finite populations,
• Adaptive traits and their mutations (mutation rates, distributions, occurrences),
• Ecological interactions between phenotypes.

The last 2 ingredients may be omitted, in which case population dynamics are simulated with
no evolutionary component.

Phenotypes

The evolutionary component of ZEN is ‘phenotype-based’. A phenotype is a set of
individuals sharing the same values of their adaptive traits. Within a phenotype individuals
are identical. We say that a population is monomorphic for a trait if the distribution of the trait
across phenotypes is unimodal, and polymorphic if the distribution is multimodal.

In ZEN, a set of phenotypes is called a group. At initialization, groups are strictly
monomorphic, containing a single phenotype (with several individuals). During the ZEN
simulation, mutant phenotypes created by the triggering of mutations interact with resident
phenotypes. They persist or go extinct by the play of ecological interactions, possibly leading
to evolutionary branching and polymorphism (see cover Fig. 1, and Fig. 2).

How ZEN works

In population dynamics, the population vector N is updated from one time step to the next
using discrete relations:

)(NFN =′ .
In evolutionary dynamics, the function F depends on a set S of adaptive traits:

)(NFN S=′ .
In the ZEN evolutionary formalism, a group of phenotypes is defined by a set of relations and
adaptive traits. Let’s assume for simplicity that there is only one adaptive trait s, and a single
relation:

)(nfn s=′ .
Within the group, there is a description of the way mutations in the adaptive trait occur. As
the ZEN simulation proceeds, phenotypes are created and destroyed. When there are P
phenotypes with traits)1(s , …,)(Ps , each phenotype (i) is driven by his own relation:

)()()(
)(

i
s

i nfn i=
′ ,

with)(in the number of individuals in the phenotype, and)(is the value of the trait in the
phenotype. The relation-variable n is multivalued, with values)1(n , …,)(Pn . The above
phenotype-specific relations are not independent but linked by ecological interactions.
Typically, the population size)(in in each phenotype depends on the population size in other
phenotypes in the same group, or in other groups.

 6

The ZEN process

The mutation procedure has 2 important parameters, the mutation rate µ and the standard
deviation σ in the distribution of mutations. These parameters influence the evolutionary time
t, and also the execution time:

t is proportional to µ
1 ,

t is proportional to 2
1

σ
.

For example, multiplying σ by 2 divides evolutionary time by 4, phenotypes making larger
incursions in the evolutionary space. In this case, the execution time should be reduced
because the computations are roughly the same, while the simulation needs to be run for a
shorter period. On the contrary, multiplying µ by 2 divides evolutionary time by 2, but should
not reduce execution time. Indeed, more mutants are created, resulting in more computations.
The mutation procedure is described precisely in section 3.

The process operated by ZEN is a form of branching process: it is density-dependent (though
this is not requested) in order to avoid population sizes to blow, and it is bifurcating because
of the mutations. This process has not been studied mathematically.

Figure 3. Same model as in Fig. 1, with a different competition function
(discrete version of a model from Kisdi & Geritz 2001).

 7

2. FIRST STEPS

Population dynamics

Population dynamics models in discrete time are based on the life cycle graph. The life cycle
is a macroscopic description of an organism within a population. It incorporates the genotype
and part of the phenotype.

J
s

f

A

v

In this (female-based) example, there are 2 age classes, juveniles and adults. Juveniles survive
to the adult stade with survival rate s. Adults survive with adult survival rate v, and reproduce
with fertility rate f. Let 1n be the number of juveniles, and 2n the number of adults. Relations
can be written, relating population size from one time step to the next:

(1a) 21 fnn =′

(1b) 212 vnsnn +=′ .
Relation (1b) means that the number of adults at the next time step is obtained from the
number of juveniles surviving with rate s, plus the number of adults surviving with rate v.
These relations can be put in matrix form and relevant informations about the dynamics
(growth rate, population structure, elasticities) can be retrieved (Caswell 2000), as is done in
the ULM program (Legendre & Clobert 1995, Ferrière et al. 1996).

Example: model file regis.zen

• Drag and drop model file regis.zen to the zen.exe icon. The file appears in the Model file

window:

defmod regis(2)
rel: r1,r2

defrel r1
n1 = f*n2

defrel r2
n2 = s*n1 + v*n2

These declarations correspond to relations (1ab).
The declaration language is described in section 3.

 8

Some more declarations are commented below:

defvar n = n1 + n2 { total population size n

defvar r = 115 { basic fertility r

defvar f = r*exp(-0.01*(n1+n2)) { fertility f regulated by density

• Click button to ‘compile’ the file, that is to translate it into internal representation.
• Click button to run the model (100 time steps by default). Population trajectories are

displayed in the graphic window #1: n1 and n2 along time t.
• Click button to open graphic window #2. Click button in window #2 to set the

graphics. Change t to n1, n1 to n2, and remove n2. Select line off in the General panel.
Click OK.

• Click button in the main window to initialize the system (t = 0). Select option Run |
Settings. Change Number of time steps to 10000, change Dt text interp to 1000, click OK.
Click to run the model for 10000 time steps, with output in the main window every
1000 times steps. A strange attractor appears in window #2 (Fig. 4), with the
corresponding population trajectories in window #1.

• Click button to view the variables. Change the expression of variable r to 50. Type
<return>. The system is initialized (init). Click the Run button . A single point
equilibrium is displayed.

Figure 4. Density-dependent population dynamics produce this strange attractor

(model from Ferrière 1992).

 9

Demographic stochasticity

Demographic stochasticity is inherent to the demographic process. Its effects are more
important when population size is small. Using the previous example, it is modeled by
building a branching process on the basic relations (1ab), using integer-valued distributions:

(2a)),(21 fnpoissonn =′ ,

(2b)),(),(212 vnbinomsnbinomn +=′ .
Relation (2a) means that the number of juveniles at the next time step is obtained by summing
f samples of the Poisson distribution. In relation (2b) the number of survivors is computed
using binomial distributions.

This modeling of demographic stochasticity gives an individual-based feature to the
simulation. Individuals are not distinguished by their demographic parameters, which keep
their average values, but the fate of individuals is taken into account, via the chance
realization of these average parameters.

Example: model file pass_2s.zen

This is a 2-sex model for passerine (Legendre et al. 1999). Demographic stochasticity is
modelled in the same way as in relations (2ab).

• Click . Type ‘graph t n’ and <return> in the Interp panel of the main window to

parameterize the graphics in window #1 (population size n as a function of time t). Type
‘yscale 0 400’ to fix the bounds on the Y axis. Type ‘addgraph’ to superimpose graphics.

• Type ‘run 50 10’ to run the model for 50 time steps with output every 10 time steps. The
stochastic trajectory appears in graphic window #1.

• Type ‘init 2’ in the Interp panel. The system is initialized (init), with seed = 2. Now type
‘run’. Another realization of the process is run for 50 time steps (the previous trajectory
corresponded to seed = 1). The trajectory appears superimposed in the graphic window.
Type ‘init 3’, ‘init 4’, … to produce other trajectories.

• Type ‘montecarlo 50 1000’ to run the Monte Carlo simulation (50 time steps, 1000
trajectories). The mean trajectory is displayed. The probability of extinction along time
appears in the main window.

The previous commands could have been executed by appropriate clicking. See section 4 for
the list of available commands.

• Click in graphics window to set graphics. Unselect option superimpose in the General

panel. Select options MinMax and 2 sigma in the MonteCarlo panel. Click OK.
• Click to run Monte Carlo simulation (50 time steps, 1000 trajectories). Mean trajectory

with minima, maxima and 2 sigma confidence intervals, along time and across
trajectories, are displayed.

• Click to open a text window. Click the Settings option in the text window. Replace
nm1 by n, remove nm2, nf1, nf2. Click OK.

• Click to run Monte Carlo simulation (50 time steps, 1000 trajectories). Mean values of
n along time, over all trajectories and over non extinct trajectories, appear in the text
window with standard errors (SE).

 10

Evolutionary dynamics

The population dynamics can be further refined by distinguishing individuals according to
phenotypic traits. These traits can be adaptive, subjected to the mutation-selection process,
and this is what is intended in the evolutionary component of ZEN.

Example: model file kisdi.zen

The original model (Kisdi & Geritz 2001) is built from a Lotka-Volterra system

(3) ∑α−=
j

jjii
i

i
nsssrdt

dn
n),()(1 ,

with in the density of phenotype i,)(isr the intrinsic growth rate depending on the adaptive
trait is , the size of individuals. The sum is an interaction term depending on the difference in
size via the competition function α. This model is translated into a discrete one, handling
integer population sizes:
(4))),(()1(ftnpoissontn =+ ,
with the growth rate)exp(rbraf −= (see below).

Note: The use of the Poisson distribution is not mathematically rigorous, though it produces
satisfactory results. See p. 44 for a rigorous approach.

• Drag and drop model file kisdi.zen to the zen.exe icon. The file appears in the Model file

window. Here is the declaration of the group, to which comments are added:

defgroup gg(1) { declaration of group gg
rel: rel
mut: s

defrel rel
n = poissonf(n,f) { the relation corresponds to Eq. 4

defvar n = 1000 { initial population size in the group

defmut s = 1.0 { declaration of adaptive trait s, with initial value 1
trigger: t1 { and characteristics of mutations
occur: 1
number: binomf(n,mu)
distrib: min(max(gaussf(s,sigma),s_min),s_max)
replace: 0
concern: n

defvar ra = r(s) { growth term

defvar rb = groupsumf(gg,alpha(focalf(s),s)) { interaction term

defvar f = exp(ra - rb) { growth rate

endgroup { end of group declaration

The group corresponds to the system of equations (3), to which is added the description of
mutations in the adaptive trait s (in blue). In the ZEN formalism, population size n and the
adaptive trait s are multivalued variables, and so are the group variables ra, rb, f. The

 11

expression for variable rb can be read: ∑α==
s

nsssrbrb)*,(*)(. It describes the ecological

interactions (the competitive environment perceived by the focal phenotype with trait s*), and
corresponds to the sum in Eq. 3. The functions r (growth) and alpha (competition) appearing
in the declaration of ra and rb are declared elsewhere in the file:

deffun r(s) = 4 - s

deffun alpha(s1,s2) = c*(1 - 1/(1 + nu*exp(-k*(s1 - s2)))) + a

• Click . Click in the graphic window to set graphics. Replace nnn by s. In the Axis

panel, set Ymax to 4, select option Fix Yscale (this sets the bounds on the Y axis). Click
OK. Click to run the model (100 time steps). The diversification of phenotypes appears
in the graphic window: the distribution of the trait s across phenotypes is displayed along
evolutionary time in abscissas. The color indicates the density in each phenotype (red,
yellow, green, blue with decreasing density). The main window tells that at time t = 100,
there are 4390 individuals in the group, dispatched in 128 phenotypes:

Model kisdi -> pop = 962.0
growth rate from [t = 0] -> 0.999613

Group gg -> pop = 4390 nb_pheno = 128
growth of group from [t = 0] -> 1.014903
life expectancy of phenotypes from [t = 0] -> 0.8435
growth rate of phenotypes from [t = 0] -> 1.049634

• Select option Variable | All to get a hierarchical view of ZEN objects. Select Phenotypes

in group gg. All phenotypes present at time 100 appear in the left panel (128 phenotypes
in all):

Pheno#3942 created from #379 at t = 100 nb = 1 -> 0.023%

 n = 1
s = 0.9794
ra = 3.021
rb = 6.955

 f = 0.01955
Pheno#3941 created from #379 at t = 100 nb = 1 -> 0.023%

 n = 1
 s = 0.9747
 ra = 3.025

rb = 6.976
 f = 0.01925

 (…)
Pheno#1874 created from #793 at t = 48 nb = 692 -> 16%

 n = 692
 s = 1.01
 ra = 2.99
 rb = 6.823
 f = 0.02164
 (…)

Pheno#535 created from #442 at t = 14 nb = 131 -> 3%
 n = 131

 s = 1.042
 ra = 2.958

rb = 6.685
 f = 0.02407

 12

Pheno#379 created from #1 at t = 10 nb = 80 -> 1.8%
 n = 80

s = 0.9762
ra = 3.024
rb = 6.969

 f = 0.01935

In each phenotype, the values of the adaptive trait s are given, together with the values of the
group variables. Phenotypes #3942 and #3941 are mutants created at time t = 100. They
contain 1 individual. At the bottom appear the most ancient phenotypes. Phenotype #1874 is
the most frequent (692 individuals, 16% of the group population), though its growth rate f is
less favorable than that of phenotype #535 (131 individuals). The last phenotype #379 (80
individuals) mutated from the initial (now extinct) phenotype #1 at time t = 10. The term nb is
the number of individuals in the phenotype, computed by summing the values of the relation-
variables of the group. Here there is only one relation with variable n, so that n and nb agree.

• Select Phylogeny in the Variable | All panel. A phylogenetic tree of all actual phenotypes

is displayed:

(…)
Pheno#1874 t = 48 -> 16%
s = 1.01

 Pheno#3254 t = 83 -> 3.1%
 s = 0.9736

 Pheno#3845 t = 99 -> 0.14%
 s = 0.9807
 Pheno#3888 t = 100 -> 0.023%
 s = 0.9936

 Pheno#3852 t = 99 -> 0.068%
 s = 1.046

 Pheno#3856 t = 100 -> 0.023%
 s = 1.052

 Pheno#3912 t = 100 -> 0.023%
 s = 1.014
 Pheno#3913 t = 100 -> 0.023%
 s = 1.006
 Pheno#3914 t = 100 -> 0.023%
 s = 1.007
 Pheno#3915 t = 100 -> 0.023%
 s = 1.004

(...)

The most abundant phenotype #1874 created at time 48 produced #3254 at time 83, #3852 at
time 99, #3912 at time 100, etc… Its descendant #3254 produced #3845 at time 99 and #3888
at time 100.

• Click to initialize (init). Select option Run | Settings. Change Number of time steps to

5000, and Dt text interp to 1000. Click OK to close the panel. Click to run the model
(5000 time steps). This takes about 8 mn. The graphics correspond to the bottom of Fig. 1.

• Click to view the variables. Change expression of variable c0 from 1 to 2, type

<return>. Change expression of variable a0 from 1 to 0, type <return>. This modifies the
parameters in the competition function alpha. The system is initialized. Click to run the
model (5000 time steps). This takes about 4 mn. The different shape of the evolutionary
branching can be appreciated. The graphics correspond to the bottom of Fig. 3.

 13

3. OBJECTS

ZEN models are built from objects related by mathematical functions, and processed along
time by the ZEN kernel. The models are described in an input text file (*.zen file), using a
declaration language. The model file is processed by the compile command (), and searched
for syntax errors. When the syntax is correct, the model can be run ().

There are 6 types of objects handled by the ZEN kernel with corresponding keywords:

General

 defmod declaration of model
 defrel declaration of relation
 defvar declaration of variable
 deffun declaration of function

Evolutionary

defgroup declaration of group of phenotypes

(…)
defmut declaration of adaptive trait within group
(…)

endgroup end of group declaration

Each object is referenced by a user chosen name (names begin with any letter ‘a’ to ‘z’).
Other keywords specify mathematical operators or functions (see section 5).

General

• Declarations of objects must be separated by blank lines.
• Lines beginning with ‘{‘ are comment lines and are not processed.
• The model file must begin with the declaration of a model (defmod).
• The declaration of a model must precede the declarations of its associated relations.
• Relations may be declared without any link to a model.
• All variables and functions must be declared explicitly.
• Letters are converted to low case; the interpreter is not case sensitive.

Evolutionary

• Declaration of adaptive trait (defmut) is local to a group.
• Declaration of variable (defvar) and relation (defrel) within a group relate these objects to

the group.
• General purpose variables (like constants) should not be declared within a group.

 14

defmod declaration of model

defmod model_name(k) declaration of model of size k
rel: rel1, ... , relk names of k relations

Example: model file regis.zen

defmod regis(2)
rel: r1, r2 2 relations, r1 and r2

A model describes populations whose dynamics are driven by a set of discrete time relations,
r1 and r2 in the example. A single model file may include several models.

defrel declaration of relation

defrel relation_name
var_name = expression expression for the relation

Example: model file regis.zen

defrel r1
n1 = f*n2

defrel r2
n2 = s*n1 + v*n2

In this example, variables n1 and n2 are relation-variables constituting a population vector.
From one time step to the next, relation-variables are updated in parallel (and not
sequentially), as would be the case in matrix form:

ttt n
n

vs
f

n
n











=





+ 2
1

12
1 0 .

The population size of the model is the sum of the values of the relation-variables: n1 + n2.

 15

defvar declaration of variable

defvar variable_name = expression

There is one and only one predefined variable, whose name is t for ‘time’. Variable t takes
values 0, 1, 2, ... as the system is run. Other variables are declared by the user.

If variable_name corresponds to a variable pertaining to a relation (such a variable is called a
a relation-variable), then expression must be a real number, which is the initial value of the
variable. Variables declared within a group (group variables) are multivalued (see defgroup).
Group variables can be used outside of their group within the scope of the functions
groupmeanf, groupmaxf, groupminf, groupsumf, groupsum1f (section 5).

Examples:

defvar s0 = 0.2 constant

defvar n1 = 100 relation-variable with initial value 100

defvar phi = (1+sqrt(5))/2 constant

defvar x = gaussf(2,0.1) random variable

normal distribution with mean 2 and standard deviation 0.1

defvar w = if(t > 10, x, 0) conditional

defvar n1 n2 = 100 shared declaration

deffun declaration of function

deffun function_name(arg1, ... , argN) = expression

The arguments of the function have the names arg1, …, argN.

Examples:

deffun som(v,n) = (1 - v^(n+1)) / (1 - v) sum of a geometric serie

deffun fac(n) = if(n, n*fac(n-1), 1) recursive definition of the factorial

deffun alpha(s1,s2) = c*(1 - 1/(1 + nu*exp(-k*(s1 - s2)))) + a (file kisdi.zen)

 16

The update procedure, from one time step to the next

At each time step of the ZEN simulation, relations and variables are updated in a specific
order given below.

 The right hand side expression of all relations are computed.

 Relation-variables associated with group relations are updated.

The number nb of individuals in each phenotype in each group is known at this stage,
as the sum of the values of the relation-variables of the group.
All phenotypes for which nb = 0 are destroyed.

Relation-variables associated with model relations are updated.
Relation-variables associated with other relations are updated.

 Time t is updated (t = t + 1).

All remaining variables are updated according to their dependencies.

Some variables can trigger mutations (see the mutation procedure forward).
The mutations are triggered as soon as their triggering variable is updated.

At initialization (init), the ZEN program builds a hierarchy of all variables, according to their
dependencies. It is checked whether there are circular definitions of variables: if this is the
case, the message “cycling definition of variable xxx” warns the user that the computations
are not reliable. From the hierarchy an order of evaluation over all variables is established.
This order is used throughout the simulation to update the variables consistently (use button

 to see the order of evaluation).

The values of the ZEN variables are computed in real numbers arithmetic. The relation-
variables in models represent population numbers or densities: they take discrete (integer)
values or continuous (real) values. The relation-variables in groups represent finite
populations, and should take integer values. In any case, for each phenotype, the sum of their
values represents the number nb of individuals in the phenotype, and is rounded to the nearest
integer value.

 17

defgroup declaration of group

defgroup group_name(k) declaration of group of size k
rel: rel1, ... , relk names of k relations
mut: mut1, …, mutm names of m adaptive traits

 declarations of relations rel1, …, relk (using defrel)
 declarations of variables associated with these relations (using defvar)
 declarations of local group variables (using defvar)
 declarations of adaptive traits mut1, …, mutm (using defmut)

endgroup end of group declaration

A group is sub-object of a model. It represents a set of individuals pertaining to a single
phenotype at the beginning of the simulation, and to several phenotypes as evolution
proceeds. The relations (defrel) account for the population dynamics of the group; the
adaptive traits (defmut) are subjected to mutations. During the ZEN simulation, mutations are
triggered, new phenotypes are created, while others go extinct by the play of ecological
interactions. Within a group, individuals are distinguished by their phenotypes, that is by the
values of their adaptive traits. Variables declared in a group (called group variables) are
multivalued: they have as many values as there are different phenotypes.

Example: model file kisdi.zen

defgroup gg(1) declaration of group gg
rel: rel with relation rel
mut: s and adaptive trait s

defrel rel declaration of group relation rel
n = poissonf(n,f)

defvar n = 1000 n is a group relation-variable:
 number of individuals in the initial single phenotype
 number of individuals in each phenotype during the simulation

defmut s = 1.0 declaration of adaptive trait s (see defmut)
(…)

defvar ra = r(s) ra, rb, r are group variables
 each phenotype has is own values of these variables

defvar rb = groupsumf(gg,alpha(focalf(s),s))
 functions groupsumf and focalf are described in section 5

defvar f = exp(ra – rb)

endgroup end of group declaration

 18

defmut declaration of adaptive trait

defmut mut_name = val declaration of adaptive trait with initial value val
trigger: var_name name of triggering variable
occur: expr_occur expression for date of occurrence
number: expr_number expression for number of mutations
distrib: expr_distrib expression for distribution of mutations
replace: 0/1 replace option, 0 or 1
concern: var_concern name of concerned variable

The declaration of adaptive trait appears only within the scope of a group (defgroup …
endgroup), and has a corresponding entry in the group declaration (see defgroup).
The defmut keyword is followed by 6 keywords (trigger, occur, number, distrib, replace,
concern), in this order (no blank line). These keywords describe the way mutations occur.
Their meaning is explained below. Adaptive traits are considered as group variables with
special features.

Example: model file kisdi.zen

defmut s = 1.0
{ adaptive trait s has initial value 1
trigger: t1
{ mutations are triggered by variable t1
occur: 1
{ they occur at each time step (next date = 1)
number: binomf(n,mu)
{ the number M of mutants is drawn from phenotype size n (number of individuals
{ sharing the same value of s), with mu the mutation rate
distrib: min(max(gaussf(s,sigma),0),4)
{ the value of the adaptive trait s of mutants is drawn according to the normal distribution
{ with standard deviation sigma (the distribution is constrained here between 0 and 4)
replace: 0
{ replace mode off
concern: n
{ the concerned variable is phenotype size n, to which M will be subtracted (M mutants).

 19

The mutation procedure

The mutation procedure triggers one or several times within each time step. It applies to all
phenotypes in one or several groups. The procedure proceeds sequentially in the following
way.

1. trigger. The triggering variable allows to specify when, inside a time step, the
corresponding adaptive traits are mutated. In the example above, the triggering variable is t1 =
magicf(t) (see function magicf in section 5), triggering the mutation of trait s. After the update
of relation-variables, time t is the first variable updated at each time step (see update
procedure above): the declaration means in this example that the mutation procedure is
triggered just after t is updated, and before any other variable is updated (see model file
ravigne.zen for a more sophisticated example).

2. occur. The date of the next occurrence is specified by an expression (1 in the example
above). If the date (computed at the previous time step) does not match the time t, the
mutation procedure is exited at this stage, and has no effect.

3. number. For each phenotype (i), the number)(iM of mutants is computed according to the
expression provided. Typically, a fraction of the number of offspring in the phenotype mutate
with the mutation rate µ.

4. distrib. For each mutant in each phenotype, the mutated value s’ of the adaptive trait s is
computed according to the expression provided. Typically, the value s’ is computed using a
distribution around the trait value s of the phenotype, with the standard deviation σ. However,
any expression can be used to compute s’.

5. replace. The expression is the constant 0 or the constant 1. If the replace option is 1, when
a mutant appears with trait s’, it is checked whether a phenotype with the same trait value
already exists. If this is the case, the number of individuals in the existing phenotype is
increased by 1, and no new phenotype is created. If the replace option is 0, the check is not
performed. The option is intended for mutation with integer-valued distributions (for
distributions with continuous values, the probability to create an already existing value of the
trait is theoretically 0). The option replace = 1 can be time consuming.

6. concern. The concerned group variable x represents, in each phenotype, the individuals
subjected to mutations. As it is the case in the example above, the concerned variable is
usually the variable from which the number of mutants is computed in the number section.

Assume that there are P phenotypes at the start of the mutation procedure. During the
mutation procedure, each phenotype (i) produces)(iM mutants (number). A total of

)()1(PMMN ++= L new phenotypes are created, each one containing a single mutant
individual, with the mutated value s’ of the trait s computed according to the distribution
(distrib). The value of the concerned variable x (concern) on each mutant phenotype is set to
1. The value of x on each original phenotype (i) of is set to)(iMx − . Consequently, the sum
∑

i

ix)(of the values of the multivalued variable x over phenotypes does not change. The

number nb of individuals in the created mutant phenotype is set to 1. The number nb of

 20

individuals in the original phenotype (i) is changed to)(iMnb − . Consequently, the number of
individuals in the group does not change. At the end of the mutation procedure there are P +
N phenotypes in the group.
When a mutant phenotype is created, the values of the local variables and adaptive traits are
set to those of the original phenotype, and the values of the relation-variables are set to 0.
Then, the only modifications are the adaptive trait set to the mutated value s’, and the
concerned variable x set to 1. In particular, variables depending on x in the mutant and in the
original phenotype are not updated. After the mutation procedure, the values of variables in
the original and in the created phenotypes can be temporarily inconsistent (but should be
updated consistently at the next time step). The model must be constructed so that the update
of variables and the triggering of mutations are consistent.

Parallel and sequential mutations

The mutation procedure is triggered each time a triggering variable is updated. A single
variable can trigger several mutations, possibly in different groups. When mutations 1m ,

2m … are triggered by the same triggering variable, they do not interfere in the sense that im -
mutants are not subjected to any of the jm mutations. On the contrary, if mutations 1m , 2m …
have been triggered and then mutations 1q , 2q … are triggered by another triggering variable,
previous im -mutants are subjected to them.
At the end of each execution of the mutation procedure, the created mutants belong to the
group population. These mutants may influence the update of the variables which were not yet
updated at the instant of their creation.

Mutations can also occur in parallel, as a single mutational event. This is the case in the model
file ravigne.zen:

defgroup gg(2)
rel : rel1, rel2
mut : p, a1, a2
(…)

defmut p a1 a2 = 0.9 0.6 0.1
trigger : declench
occur : 1
number : binomf(eggs,mu)
distrib : min(max(gaussf(p,sigma),0),1); min(max(gaussf(a1,sigma),0),1); min(max(gaussf(a2,sigma),0),1)
replace : 0
concern : eggs

The adaptive traits p, a1, a2 have initial values 0.9, 0.6, and 0.1 respectively (separated by
blanks). They share mutational characteristics, except for the distributions (declarations
separated by a semi-colon ‘;’). One can consider that the traits p, a1, a2 are coded by a single
locus, with an infinity of alleles. Their ‘parallel’ mutations are computed simultaneously from
a same set of individuals. The mutants have the mutated traits (p’, a1’, a2’). If the mutations
of p, a1, a2 were ‘sequential’, the mutants would have the traits (p’, a1, a2), (p, a1’, a2), (p,
a1, a2’), and would not be created from exactly the same set of individuals.

 21

4. COMMANDS

Once the ZEN model file is compiled (using), commands allow to study the model
interactively (run simulations, set graphics, …). Most commands rely on clicking the
appropriate buttons (like to run the model, to initialize the model), and can be
parameterized using the appropriate Settings options (like Run | Settings). Most commands
can also be entered in the small Interp panel of the main window. The syntax is

 command_name p1 p2 ...

where command_name is the name of the command, and p1, p2, ... are parameters of the
command. For example, after typing

 run 100 10

the system is run for 100 time steps with output every 10 time steps in the large panel of the
main window. Trajectories are displayed in the graphic windows.

 Equivalently, select the Run | Settings option, set Number of time steps to 100, and Dt
text interp to 10. Then click the Run button .

Parameters of commands are names, integer or real values, or may be empty. Each command
can be abbreviated by a single character. For example,

 graph t n1 n2 is equivalent to g t n1 n2

and sets the trajectories to be displayed in graphic window #1, in this case the values of
variables n1 and n2 along time t.

 Graphics can also be parameterized using the Settings option in the graphic
windows.

In this section, the list of commands is sorted in alphabetical order. The mention ‘on/off’
means that the command works in an on/off manner. For example, typing

 addgraph

allows to superimpose graphs in graphic window #1 (‘Addgraph ON’), and typing again

 addgraph

disables this option (‘Addgraph OFF’).

The mention ‘graph’ indicates that the command is related with graphics. Optional command
parameters are between < >.

 22

Command file

ZEN simulations can be performed in absence of the user via a command file, a text file
containing the commands you would have typed in the interp panel.

Example1: command file associated with model file kisdi.zen

graph t s set graphics, adaptive trait s along evolutionary time t
yscale 0 4 fix bounds on Y axis
run 30000 1000 run 30000 time steps, with results every 1000 time steps
savegraph kisdi.bmp save graphics in bitmap file kisdi.bmp

The procedure is the following:
• Drag and drop the zen.exe icon to the desktop, creating a shortcut to zen.exe.
• Right click the shortcut to access to its properties, and add to the name of the program

(zen.exe) the names of the files:
C:\zen\zen.exe kisdi.zen kisdi.in kisdi.out

The syntax is:
C:\zen\zen.exe model_file command_file output_file

It can be necessary to give the path to the files, like C:\zen\kisdi.zen. The output file is
optional: if provided, results displayed in the main window will be stored in it.

• Left click the shortcut to run the ZEN simulation.

Example2: command file associated with model file pass_2s.zen

graph t n set graphics
text t n set output in the main window
change nm1 2 set population size and structure
change nm2 2
change nf1 2
change nf2 2
montecarlo 100 1000 run Monte Carlo simulation
change nm1 4 set population size and structure
change nm2 4
change nf1 4
change nf2 4
montecarlo 100 1000 run Monte Carlo simulation

Several simulations with different model files can be grouped using a batch file. Simply create
a text file containing the relevant commands for executing the ZEN program.

Example3: batch file associated with the 2 previous examples

zen.exe kisdi.zen kisdi.in kisdi.out
zen.exe pass_2s.zen pass_2s.in pass2s.out

The file must have the .bat extension, for example MySimul.bat. In this example, the batch
file is located in the same directory as zen.exe, kisdi.zen, kisdi.in, pass_2s.zen and pass_2s.in.
Double-click the batch file MySimul.bat to execute the simulations.

 23

Addgraph on/off graph

abbreviation: +
other name: add
syntax: addgraph
function: Superimpose graphics.
default: off

 Use option Superimpose in the graphic windows Settings .
 Graphic window #i can be selected using the window command.

note: When addgraph is on, do not resize the graphic window.

example: model file met_esd.zen

? change nmax 200 change value of population ceiling
? graph t n plot population size n as a function of time t
? run 100 run 100 time steps

 ? yscale fix bounds in Y axis
Yscale ON [1; 3115]
? addgraph superimpose graphics
Addgraph ON
? change nmax 50 back to initial value of population ceiling

 Init
? run 100 run 100 time steps

 appreciate how the trajectory separates from the previous one
 once the population ceiling is reached

 24

Changevar

abbreviation: c
other name: change
syntax: change var expr
parameters: var variable name
 expr mathematical expression
function: Replace actual expression of variable var by new expression expr.
 System is initialized (init).

 Use button to display the model variables. The expression of any variable can be
changed by clicking in the corresponding field.

note: Relation-variables must be set to a real number, which is their initial value.

Adaptive traits (declared using defmut) are considered as variables,
their initial value can be changed; it must be a real number.

example1: model file pass_2s.zen

? graph t n plot population size n as a function of time t
? montecarlo 50 1000 run Monte Carlo simulation
 probability of extinction pe = 0.616

 ? change s0 beta1f(0.2,0.15) make juvenile survival rate s0 stochastic
? montecarlo 50 1000 run Monte Carlo simulation

probability of extinction pe = 0.911

example2: model file kisdi.zen

? graph t s plot adaptive trait s as a function of (evolutionary) time t
? yscale 0 4 fix bounds in Y
? run 5000 100 run 5000 time steps, with results every 100 time steps

(wait about 6 minutes)
 display evolutionary branching at time t = 3200

 ? view mu sigma display parameters of mutations
 mu = 0.02 mu = mutation rate µ

sigma = 0.02 sigma = standard deviation σ
? change sigma 0.04 multiply standard deviation by 2
Init
? run 2000 run 2000 time steps (wait about 2 minutes)

display evolutionary branching at time t = 800 = 3200/4
 shows that evolutionary time t is proportional to σ2

? change mu 0.04 multiply mutation rate by 2
Init
? run 1000 run 1000 time steps (wait about 4 minutes)

display evolutionary branching at time t = 400 = 800/2
 shows that evolutionary time t is proportional to µ

 25

Distribution on/off graph

abbreviation: u
other name: distrib
syntax: distrib <delta>
parameter: delta real number > 0 (default delta = 1)
function: Display distributions of variables specified by the graph command.
 For variable x: number of values of x such that
 delta*j <= x < delta*(j+1) for j = 1, ..., 10000.
 For the run command, distribution along time.
 For the montecarlo command, distribution across trajectories at time horizon.
default: off

 Use option distrib in graphic windows Settings .
 Select option include 0 to include the value 0 in the distribution.
 Graphic window #i can be selected using the window command.

note: The distrib command does not affect the representation of group variables
 (group variables are represented using their distribution across phenotypes).

example1: model file pass_2s.zen

 ? graph t n note: t is dummy for distrib
 ? distrib 100 set distribution mode with delta = 100
 Distribution mode ON
 ? run 100 display distribution of n(t) along time
 ? montecarlo 100 1000
 display distribution of n(t) at time t = 100, over 1000 trajectories

example2: model file regis.zen

 ? graph t n note: t is dummy for distrib
 ? distrib 0.1 set distribution mode with delta = 0.1
 Distribution mode ON
 ? change r 50 lead to point-equilibrium
 ? run 1000 1000 display distribution of n over 1000 time steps
 ? change r 60 lead to quasi-cycle
 ? run 10000 display distribution of n over 10000 time steps
 ? change r 110 lead to chaos
 ? run 10000 display distribution of n over 10000 time steps

 26

Erase graph

abbreviation: e
other name: clear
syntax: erase
function: Clear graphics (window #1 or graphic window selected by command window).

 Use alternatively button in graphic windows.

 27

File on/off

abbreviation: f
syntax: file file_name x1 ... xN
parameters: file_name name of file

x1 ... xN names of variables
function: Create text file file_name and store values of variables x1, ... , xN in the file

as the model is run (run or montecarlo command).
When the variable names are not given, the file file_name is closed.
Variables x1, ... , xN must either all belong to the same group or not belong to
any group.
Storage differ according to the run or montecarlo command.

1) For the run command:
For variables that are not group variables the format of each line in the file is:

t v1 v2 … vN
 where v1, …, vN are the values of variables x1, …, xN at time t.
 There is a new line in the file at each time step that is a multiple of the second

parameter ∆ of the run command (see run command).
For example, with the command

? run 1000 10
 values are stored every ∆ = 10 time steps.
 For group variables the format is:

t n1 v11 v21 … vN1
t n2 v12 v22 … vN2
…
t nP v1P v2P … vNP

 where n1, …, nP is the number of individuals in P phenotypes in the group at
 time t, and v1i, …, vNi the values of the group variables in phenotype i.

At each time step that is a multiple of ∆ there are as many lines in the file as
phenotypes in the group.

2) For the montecarlo command, montecarlo T M, with T the number
of time steps and M the number of trajectories:
For variables that are not group variables the format of each line in the file is:

j v1 v2 … vN
 where v1, …, vN are the values of variables x1, …, xN at time T

in the jth trajectory (j = 1, …, M).
There is a new line in the file at each trajectory.
For group variables the format is:

j n1 v11 v21 … vN1
j n2 v12 v22 … vN2
…
j nP v1P v2P … vNP

 where n1, …, nP is the number of individuals in P phenotypes in the group at
 time T in the jth trajectory, and v1i, …, vNi the values of the group variables

in phenotype i.
For each trajectory there are as many lines as phenotypes in the group.

 28

 Up to 5 files can be created in a session.
 Up to 10 variables can be stored simultaneously in a file.
 The path of the file can be specified (the default path is where the ZEN program is

located, usually c:/zen). Example: ? file c:/myfolder/myfile.txt x1 x2.
 The number of digits after the decimal point can be specified using the separator ‘:’

(the default precision is 4). For example, after the command
? file myfile.txt x1:10 x2

variable x1 will be stored with 10 digits after the decimal point, and variable x2 with 4
digits after the decimal point.

example1: model file ferriere1.zen

 ? file toto.txt ux open file toto.txt to store group variable ux
 File toto.txt opened
 ? file titi.txt tt ux_moy open file titi.txt to store variables tt and ux_moy
 ? run 100 1 run model (100 time steps, ∆ = 1)
 (…) values are stored in the files every time step (∆ = 1)
 ? file toto.txt close file toto.txt
 File toto.txt closed
 ? file titi.txt close file titi.txt

File toto.txt closed

File toto.txt looks:
 0 4000 50.0000
 1 1 49.7584
 1 1 51.7309
 1 1 49.7585
 1 4137 50.0000
 2 1 49.7584
 2 1 51.7309
 2 1 49.7585
 2 3896 50.0000
 (…)

File titi.txt looks:
 0 0.0000 50.0000
 1 0.0689 50.0003
 2 0.1171 50.0003
 3 0.1660 49.9997

(…)

 29

example2: model file nirma.zen

 ? file nirma.txt di_simp di_moy open file nirma.txt to store variables

di_simp and di_moy
 File nirma.txt opened
 ? montecarlo 1000 10 run model (1000 time steps, 10 trajectories)
 (…) values are stored in the file for each trajectory
 ? file nirma.txt close file nirma.txt
 File nirma.txt closed

File nirma.txt looks:
 1 1 49.7584
 2 1 51.7309
 3 1 49.7585
 (…)

 30

Graph graph

abbreviation: g
syntax: graph x y1 ... yN
parameters: x y1 ... yN names of variables
function: Display variables y1, ... , yN as a function of variable x in graphic window.
 If distribution mode is on, distributions of y1, ..., yN are displayed.
 Group variables are represented by their distribution across phenotypes.

For group variables, fix scales using commands xscale, yscale

see also: addgraph, distribution, erase, line, savegraph, window, xscale, yscale

 Up to 6 graphic windows, numbered #1 to #6, can be created using button .
 Each graphic window can be parameterized using the Settings option .
 The graph command operates on window #1 unless window #i has been selected

using the window command. It is useful in command files.

note: When the number of time steps is larger that 10000, a sampling of the

trajectories is performed (see Dt in the graphic window status bar).
 For example, for 100000 time steps a point is taken every Dt = 10 time steps.
 For group variables the resolution is 600x600.

example1: model file regis.zen

 ? graph n1 n2 set graphics for phase portrait
 ? change r 110 change bifurcation parameter
 ? run 10000 1000 display strange attractor
 ? change r 60 change bifurcation parameter
 ? run 10000 display limit cycle

example2: model file kisdi.zen

 ? graph s t set graphics for adaptive trait s with time in ordinates
 ? xscale 0 4 fix bounds in X (0 <= s <= 4)
 ? run 10000 1000 produce cover figure (in about 10 mn)

 31

Help

abbreviation: h or ?
syntax: help <xxx>
parameter: xxx name of command or mathematical function
function: Give succinct on line information about commands and mathematical
functions.

help
 list of commands and mathematical functions.
 help xxx
 short description of command xxx or mathematical function xxx.

example: ? help groupsum1f

groupsum1f(G,expr)
 sum of values of expression expr
 over all phenotypes in group G
 groupsum1f(G,x) = sum(i=1,..,groupcard;v_i)

 32

Init

abbreviation: i
syntax: init <j>
parameter: j integer >= 0, random generator seed
function: init
 initialize:
 t = 0,
 variables are reset to their initial values,
 groups are reset to their initial monomorphic state,
 random generator is reset to its initial value (called seed).
 init j
 init + seed initialized to j,
 corresponding to the j-th trajectory of the Monte Carlo procedure.
 init 1
 init + back to the default seed (j = 1).
remark: init is performed automatically after the following commands:
 changevar, montecarlo, newvar.

 Command init can be performed using button in the main window.
 The random generator seed can be set using the Run | Settings option.

example: model file pass_2s.zen

 ? graph t n
 ? init
 Init
 ? montecarlo 50 100 give probability of extinction estimate
 (...) pe = 0.68 (at time 50)
 ? init 500
 random generator seed -> 500
 Init
 ? montecarlo 50 100 another simulation of the process
 (...) pe = 0.60
 ? init 1
 random generator seed -> 1
 Init
 ? montecarlo 50 1000 back to first simulation, better estimate
 (...) pe = 0.616
 ? init 500
 random generator seed -> 500
 Init
 ? montecarlo 50 1000 back to 2nd simulation, better estimate
 (...) pe = 0.615

 33

Line on/off graph

abbreviation: l
syntax: line <col>
parameter: col integer in [1, …, 16], line color
function: If on lines are drawn between consecutive points in graphic window #1
 (or window #i specified by the window command), using color col.

Useful in command files.
default: on

 Use alternatively option line off in graphic windows Settings .
 Use color specification in graphic windows Settings , by clicking on the colored

button next to the graphic variables panels Y1 Y2 Y3 Y4.

example: model file pass_2s.zen

 ? graph t n
 ? line 1
 ? yscale 0 400
 ? run 50 display red trajectory
 ? addgraph
 ? line 2
 ? init 2
 ? run 50 superimpose green trajectory

 34

Montecarlo

abbreviation: m
other name: monte
syntax: montecarlo T M <Ext> <Esc>
parameters: T integer > 0, number of time steps
 M integer > 0, number of trajectories
 Ext real number > 0, extinction threshold (default Ext = 1)
 Esc real number > 0, escape threshold (default Esc = 107)
function: Monte Carlo simulation:

M trajectories are run over a time horizon of T time steps.
System is initialized at the end (init).

 Monte Carlo simulation is parameterized using the MonteCarlo | Settings option.
 Monte Carlo graphics are parameterized using the Settings option in the graphic

windows.
 Monte Carlo outputs are parameterized using the text windows Settings option .
 Press Ctrl-Alt simultaneously to break simulation (with the main window selected).

• Mean trajectories over M runs are displayed in the graphic windows (with min, max and

σ± 2 intervals if requested).
• Mean values along time with standard errors are displayed in the text windows (including

or excluding extinct trajectories).
• For group variables, mean distribution over phenotypes and across trajectories are

displayed.
• If distribution mode is on, distributions of trajectories at time T are displayed.
• j-th trajectory whose population size nj(t) is < Ext is declared extinct (at time t), but

computed to the end (default nj(t)<1).
• j-th trajectory whose population size nj(t) is > Esc is declared escaped (at time t), but

computed to the end.
• Population size is computed as the sum of the values of the relation-variables of the group

(or model when there are no groups).
• For each group (or model): probability of extinction along time, mean time to extinction

(computed over extinct trajectories), probability of escape, mean escape time (computed
over escape trajectories), growth rates, non extinct population size values, mean population
structure.

• Stochastic growth rate =)exp(a where a is the average of logarithmic growth rates of all

M trajectories, computed as ∑
=








 −
=

M

j

jj

T
nTn

M
a

1

))0(ln())(ln(1 ; relevant estimator for pure

environmental stochasticity.
• Growth rate of the mean pop = growth rate of the average trajectory, computed as





 −

T
nTn))0(ln())(ln(exp with ∑

=
=

M

j
j tnMtn

1
)(1)(, the average trajectory.

 35

• Mean growth rate2 = average of growth rates of non extinct trajectories, computed as

∑
= −++

++*

1
**

**

*)1()0(
)()1(1

M

j jj

jj

Tnn
Tnn

M L

L
, where)(* tn j is a non extinct trajectory.

• Growth rate2 of the mean pop = growth rate of average non extinct trajectory, computed

as
)1()0(

)()1(
**

**

−++
++

Tnn
Tnn

L

L , with ∑
=

=
*

1

*
*

*)(1)(
M

j
j tn

M
tn the average non extinct trajectory;

relevant estimator for pure demographic stochasticity.

example1: model file pass_2s.zen

 ? graph t n
 ? text t n
 ? montecarlo 50 1000 run Monte Carlo simulation
 (...) 50 time steps, 1000 trajectories

growth rate2 of the mean pop = 1. 0254
 growth rate estimator for demographic stochasticity

t pe(t) pop(t) SE pop*(t) SE
10 0.0020 47.1 0.8 47.2 0.8

 20 0.1410 42.1 1.3 49.0 1.4
 30 0.3690 42.5 2.0 67.4 2.7
 40 0.5040 48.8 3.0 98.4 5.2
 50 0.6160 63.9 4.8 166.3 10.7

 { probability of extinction, mean pop size, mean pop size over non extinct trajectories

? view cc coefficient of reduction in the number of matings
 cc = 0.95
 ? change cc 1 no reduction in number of matings
 ? montecarlo 50 1000 run Monte Carlo simulation
 (...) 50 time steps, 1000 trajectories
 growth rate2 of the mean pop = 1.0812

probability of extinction at time 50 = 0.084 (much lower than 0.616)

example2: model file pass_2s.zen

 { initial population size is 48 individuals
 ? graph t n
 ? text t n
 ? montecarlo 50 1000 30 run Monte Carlo simulation
 (...) 50 time steps, 1000 trajectories,
 extinction threshold = 30
 probability of extinction = 0.760
 { probability to get less than 30 individual by time 50
 mean population size at time 50 [SE] = 64 [5]
 mean population size at time 50 over non extinct trajectories [SE] = 247 [15]

 36

 ? change nm1 24 change initial population size
 ? change nm2 24 to 96 individuals
 ? change nf1 24
 ? change nf2 24
 ? montecarlo 50 1000 30
 probability of extinction = 0.121
 { probability to get less than 30 individual by time 50
 mean population size at time 50 [SE] = 564 [16]
 mean population size at time 50 over non extinct trajectories [SE] = 640 [17]

example3: model file pass_2s.ulm

 { initial population size is 48 individuals
 ? graph t n
 ? montecarlo 50 1000 1 100 run Monte Carlo simulation
 (...) 50 time steps, 1000 trajectories
 extinction threshold = 1
 escape threshold = 100

 probability of escape = 0.212
 { probability to get more than 100 individuals by time 50
 mean time to escape = 21
 probability of extinction = 0.616
 { probability to get less than 1 individual by time 50
 mean time to extinction = 29

example4: model file met_esd.zen

• Click option in graphic window. Change n1 to n, remove n2, n3, n4. Select options

MinMax and 2 sigma. Click OK.
• Click button to run Monte Carlo simulation (montecarlo 100 10 by default). Mean

trajectories appear with confidence intervals.
• Select option Montecarlo | Settings. Change Number of trajectories to 1000. Click OK.

Click button to run Monte Carlo simulation (now montecarlo 100 1000).

example5: model file kisdi.zen

 ? graph s t set graphics
 ? xscale 0 4

? montecarlo 1000 10 display average evolutionary trajectory in graphic window #1
 (takes about 10 min)

 37

Newvar

abbreviation: n
other name: new
syntax: newvar var expr
parameters: var name of a variable
 expr mathematical expression
function: Creation of a new variable with name var, and expression expr.

System is initialized (init).

example: model file pass_2s.zen

 ? newvar pe n < 1 create variable pe = if n < 1 then 1 else 0
 Init
 ? graph t pe set graphics
 ? yscale 0 1 fix bounds in Y
 Yscale ON [0;1]
 ? montecarlo 100 1000
 display pe = probability of extinction along time

(as average trajectory)

example: model file kisdi.zen

 ? newvar di1 groupsumf(gg,n/(ntot*ntot))
 create variable di1 = Simpson’s diversity index of group gg
 (n is phenotype size, ntot is group size)

? newvar di2 groupsumf(gg,ln0(n/ntot)/ntot))
 create variable di2 = Shannon’s diversity index of group gg
 ? graph t di1 di2 set graphics
 ? run 100 10 display diversity indexes along time

 38

Run

abbreviation: r
syntax: run T <∆>
parameters: T integer > 0, number of time steps (default T = 100)
 ∆ integer > 0, number of steps for text display (default ∆ = 10)
function: Run the models for T time steps with output every ∆ time steps.

see also: command init

 The run command is parameterized using the Run | Settings option.
 Graphics are parameterized using the graphic windows Settings option .
 Results are parameterized using the text windows Settings option .
 Press Ctrl-Alt simultaneously to break simulation (with the main window selected).

• Trajectories are displayed in graphic windows, numerical values are displayed in text

windows. For group variables, distributions across phenotypes are displayed along time.

• Growth rates of the models from time t = 0T : 



 −+=λ T

TnTTn))(ln())(ln(exp 00 , with n

the number (or density) of individuals along time (sum of relation-variables values).

• Growth rates of groups from time t = 0T : 



 −+=λ T

TgTTg))(ln())(ln(exp 00 , with g the

number of individuals in the group along time (sum of group relation-variables values).

• Growth rates of phenotypes in groups: 



 −= T

DCL)ln(exp , with C the number of

phenotypes created (born by mutation) and D the number of phenotypes destroyed (extinct
by selection) in the T time steps.

• Life expectancies of phenotypes in groups: mean value of CD tt − over phenotypes created
at time Ct which were destroyed at time Dt .

example1: model file regis.zen

 ? change r 110
 ? graph n1 n2 set graphics
 ? xscale 0 140 fix bounds in X
 ? yscale 0 2 fix bounds in Y
 ? addgraph Addgraph ON
 ? run 10000 1000 run 10000 time steps (∆ = 1000)

? run run 10000 more time steps
display strange attractor

 39

example2: model file kisdi.zen

 ? run 100 run 100 time steps from t = 0

Model kisdi -> pop = 962.0
growth rate from [t = 0] -> 0.999613

Group gg -> pop = 4390 nb_pheno = 128
growth of group from [t = 0] -> 1.014903
life expectancy of phenotypes from [t = 0] -> 0.8435
growth rate of phenotypes from [t = 0] -> 1.049634

 ? run 100 run 100 more time steps

Model kisdi -> pop = 533.0
 growth rate from [t = 0] -> 0.996859
 growth rate from [t = 100] -> 0.994112

Group gg -> pop = 4258 nb_pheno = 159
 growth of group from [t = 0] -> 1.007270

growth of group from [t = 100] -> 0.999695
life expectancy of phenotypes from [t = 0] -> 1.0745
life expectancy of phenotypes from [t = 100] -> 1.3087
growth rate of phenotypes from [t = 100] -> 1.034936

 40

Savegraph graph

abbreviation: !
other name: save
syntax: save xxx.bmp
parameter: xxx.bmp name of graphic file
function: Store graphic window in bitmap file xxx.bmp.
 The index of the graphic window to be stored can be specified

using the window command.
 The bmp file can be later modified, converted to jpg or printed.

 The savegraph command is useful in command files.
 Use alternatively the File | Save option in each graphic window.

note: In case of superimposed graphics (addgraph command), graphics are saved

using a fixed window size.

 41

Text on/off

abbreviation: t
syntax: text var1 ... varN
parameters: var1 ... varN names of variables (not group-variables)
function: If on, display values of variables var1, ..., varN in the main window,

as the run or montecarlo command is executed.
default: on

note: Values of group variables are not displayed, since they are multivalued
 (see command view, option Variables | All) .

 Button allows to open up to 6 text windows, numbered #1 to #6, which can be
parameterized using the Settings option .

 For the Monte Carlo simulation, no more than 1000 rows can be displayed. The
Sampling interval should be adjusted in accordance with the number of time steps.

 The text windows can be saved using the File | Save option .
 Command text is totally independent of the text windows, though the purpose is

similar.

example1: model file regis.zen

• Click to open text window #1, then to run the model 100 time steps. Values of time

t and variables n1, n2 are displayed in the text window (every 10 time steps).
• Click the Settings option , change n1 to n, remove n2. Change Sampling interval to 20.

Click OK.
• Click to run the model 100 more time steps. Values of time t and variable n are

displayed every 20 time steps.

example2: model file pass_2s.zen

• Select option Montecarlo | Settings. Change Number of trajectories to 1000 (Number of

time steps is 100 by default), click OK.
• Click to open text window #1. Click the Settings option , change nm1 to n, remove

nm2, nf1, nf2. Click OK.
• Click to run the Monte Carlo simulation. Values of time t , mean population size (n)

with standard error (SE), mean population size over non extinct trajectories (n*) with
standard error (SE) are displayed in the text window.

 42

View

abbreviation: v
syntax: view o1 ... oN
parameters: o1 ... oN names of ZEN objects

(variable, relation, function, group, adaptive trait)
function: Display initial and actual values of objects o1, ..., oN.
syntax: view
function: Display all ZEN objects.

 Option provides a window with initial values, actual values and expressions of all
variables. Expressions can be modified by selecting the corresponding field,
modifying the expression, and typing <return>. Click in the status bar to list variables
according to Evaluation order or Alphabetic order.

 Option Variables | All gives all ZEN objects as a hierarchical tree, with values of
group variables and adaptive traits across phenotypes. Click in the status bar to sort
objects according to date of creation, number of individuals in phenotype, and values.

 Option Variables | Calculator is a desk calculator allowing the computation of
mathematical expressions possibly involving ZEN variables.

example: model file kisdi.zen

• Click . Click to run the model 100 time steps. Select option Variables | All. Select

Mutations, then select s. Values of the adaptive trait s over all phenotypes present at time t
= 100 are displayed:

Mutation s = 1

 trigger : t1
 occur : 1
 number : binomf(n,mu)
 distrib : min(max(gaussf(s,sigma),s_min),s_max)
 replace : 0
 concern : n

Pheno#3942 created from #379 at t = 100 nb = 1 -> 0.023%
 s = 0.9794

Pheno#3941 created from #379 at t = 100 nb = 1 -> 0.023%
 s = 0.9747
 (…)

• Click to run the model 100 more time steps. Click into the Variable | All panel to

update. Values of the adaptive trait s over all phenotypes present at time t = 200 are
displayed:

Pheno#7829 created from #2002 at t = 200 nb = 1 -> 0.023%

 s = 1.047
Pheno#7828 created from #2002 at t = 200 nb = 1 -> 0.023%

 s = 1.017
 (…)

 43

Window on/off graph

abbreviation: w
syntax: window i
parameter: i integer in [1, …, 6], refer to graphic window #i
function: Select or create graphic window #i, to which will apply all subsequent

graphic commands:
 addgraph
 distribution

erase
 line
 graph

savegraph
xscale
yscale

default: i = 1

 Useful to store several graphic windows using command files.

example: model file ferriere1.zen

? graph tt ux Parameterize graphics (for window #1 by default)
? xscale 0 4000
Xscale ON [0, 4000] (graphic window #1)
? yscale 0 200
Yscale ON [0, 200] (graphic window #1)
? window 2 Create and select graphic window #2
Graphic window #2 selected
? graph tt uy Parameterize graphics for window #2
? xscale 0 4000
Xscale ON [0, 4000] (graphic window #2)
? yscale 0 200
Yscale ON [0, 200] (graphic window #2)
? run 200000 1000 Run model
? savegraph uy.bmp Save graphics in file uy.bmp for window #2
? window 1 Select graphic window #1
Graphic window #1 selected
? savegraph ux.bmp Save graphics in file ux.bmp for window #1

 44

Xscale on/off graph

abbreviation: x
syntax: xscale <xmin> <xmax>
parameters: xmin xmax real numbers, bounds of graphics on the X axis
function: Fix bounds xmin and xmax for abscissas (default: actual values).
default: off (automatic scaling on the X axis)
see also: yscale, addgraph

 Use alternatively option Fix Xscale in graphic windows Settings .
 Graphic window #i can be selected using the window command.

Yscale on/off graph

abbreviation: y
syntax: yscale <ymin> <ymax>
parameters: ymin ymax real numbers, bounds of graphics on the Y axis
function: Fix bounds ymin and ymax for ordinates (default: actual values).
default: off (automatic scaling on the Y axis)
see also: xscale, addgraph

 Use alternatively option Fix Yscale in graphic windows Settings .
 Graphic window #i can be selected using the window command.

 45

5. MATHEMATICAL FUNCTIONS

Binary operators

+ * / - ^ (power)

\ real modulo: a \ b = a - b*trunc(a/b)
 examples: 7.4 \ 2 = 1.4, 7 \ 2 = 1

@ convolution operator: F @ n = sum of n samples of distribution F
 examples: ber(p) @ n = binomf(n,p), poisson(f) @ n = poissonf(n,f)

< a < b is 1 if a is strictly less than b, 0 otherwise
> a > b is 1 if a is strictly greater than b, 0 otherwise

Unary operators

- minus
sqrt square root
abs absolute value
trunc integer part
 examples: trunc(3.5) = 3, trunc(3.8) = 3, trunc(-3.5) = -4, trunc(-3.8) = -4
round nearest integer
 examples: round(3.2) = 3, round(3.6) = 4, round(-3.2) = -3, round(-3.6) = -4

ln neperian logarithm
ln0 neperian logarithm defined in 0 by ln0(0) = 0
log decimal logarithm
exp exponential
fact factorial

cos cosinus acos inverse cosinus
sin sinus asin inverse sinus
tan tangent atan inverse tangent

Other operators

min min(a1, ..., an) = minimum of the ai
max max(a1, ..., an) = maximum of the ai

if conditional: if(A,B,C) = if 0≠A then B else C
 examples: if(2<3,1,2) = 1, if(trunc(2.5)-2,1,2) = 2

gratef gratef(x) = growth rate of variable x at time T = 



 −

T
xTx))0(ln())(ln(exp

bicof bicof(n,p) = binomial coefficient C(n,p)

 46

Random functions: continuous distributions

rand rand(a) uniform distribution over [0, a]
 domain: a > 0
 range: [0, a]
 mean: a/2
 variance: a2/12
 density: (1/a)*characteristic function of [0, a]

gaussf gaussf(m,s) gaussian distribution with mean m and standard deviation s
 domain: s > 0
 range: R

 density: () 



 −−

π

2

2
1exp

2
1

s
mx

s

gauss gauss(s) gaussian distribution with mean 0 and standard deviation s
 gauss(s) = gaussf(0,s)

gamm gamm(a) gamma distribution with parameter a
 domain: a > 0
 range: R+

*
 mean: a
 variance: a
 density: (1/Γ(a)) xa-1e-x

betaf betaf(a,b) beta distribution with parameters a and b
 domain: a > 0, b > 0
 range: [0, 1]
 mean: a/(a+b)
 variance: ab/((a+b+1)(a+b)2)
 density: (Γ(a+b)/Γ(a)Γ(b)) xa-1(1 - x)b-1e-x

beta1f beta1f(m,s) variant of beta distribution with mean m and standard deviation s
 domain: m > 0, 0 < s2 < m(1 - m)
 range: [0, 1]
 mean: m
 variance: s2

 remark: the distribution is bell-shaped for small s and U-shaped for large s

expo expo(a) exponential distribution with parameter a
 domain: a > 0
 range: R+

*
 mean: 1/a
 variance: 1/a2

 density: aexp(-ax)

lognormf lognormf(m,s) lognormal distribution with mean m and standard deviation s
 domain: m > 0, s > 0
 range: R+

*

 47

Random functions: integer distributions

ber ber(p) Bernoulli samples: P(X = 0) = 1 - p, P(X = 1) = p
 domain: 10 ≤≤ p
 range: {0, 1}
 mean: p
 variance: p(1 - p)
 generating function: f(s) = (1-p) + ps

binomf binomf(n,p) binomial distribution: P(X = k) = C(n,k)pk(1 - p)n-k
 domain: 0≥n , 10 ≤≤ p
 range: {0, 1, ..., n}
 mean: np
 variance: np(1 - p)
 generating function: f(s) = ((1-p) + ps)n

nbinomf nbinomf(r,p) negative binomial distribution: P(X = k) = C(k+r-1,r-1)pr(1 - p)k
 domain: r real > 0, 10 ≤≤ p
 range: N
 mean: r (1 - p)/p
 variance: r (1 - p)/p2

nbinom1f nbinom1f(m,s) negative binomial distribution, mean m, standard deviation s
 domain: 0 < m < s2
 range: N
 mean: m
 variance: s2

poisson poisson(m) Poisson distribution with mean m: P(X = k) = e-m mk/k!
 domain: 0≥m
 range: N
 mean: m
 variance: m
 generating function: f(s) = exp(m(s-1))
poissonf poissonf(n,m) give the sum of n samples of poisson(m)

geom geom(p) geometric distribution with parameter p: P(X = k) = p(1 - p)k
 domain: 10 ≤≤ p
 range: N
 mean: (1 - p)/p
 variance: (1 - p)/p2
 generating function: f(s) = p + p(1 - p)s/(1 - (1 - p)s)

tabf tabf(p0, ..., pn) tabulated distribution: P(X = k) = if nk ≤ then pk else 0
 domain: 10 ≤≤ kp , p0 + ... + pn = 1
 range: {0, 1, ..., n}
 mean: m = f '(1) = p1 + 2p2 + ... + npn
 variance: f ''(1) + m - m2
 generating function: f(s) = p0 + p1s + ... + pnsn

 48

From continuous time to discrete time

Models of adaptive dynamics are often given as birth-death processes in continuous time,
while ZEN works in discrete time. A special function bdf is provided to handle the discrete
time under which a continuous birth-death process is observed.

bdf bdf(n,b,d,∆)

n = number of individuals, b = birth rate, d = death rate, ∆ = observation interval.

Example: model file kisdi.zen (see p. 11)

defvar delta = 0.1 { observation interval

defgroup gg(1) { declaration of group gg
rel: rel
mut: s

defrel rel
n = bdf(n,ra,rb,delta) { the relation replaces n = poissonf(n,f)

(…)

defvar ra = r(s) { growth term, birth rate

defvar rb = groupsumf(gg,alpha(focalf(s),s)) { interaction term, death rate

The bdf distribution is used in the same way as the poissonf distribution: the number n′ of
individuals in the next time step is computed as a sum of n trials. The formulas given below
have been developed by Amaury Lambert.

Let tZ denote the stochastic population size at time t , sampled from the continuous time
birth-death process, with ∆ the observation interval. Let dbr −= denote the rate of increase,

)0(0 == tZPp the probability of reaching 0 individuals at time t ,)0(≠== ttk ZkZPp , the
probability of having k individuals at time t , conditional upon non extinction. We compute

0p and ρρ−= −1)1(k
kp according to

1) 0<r : ∆

∆

−
−= r

r

bed
edp)1(

0 , ∆−
−=ρ rbed

bd ,

2) 0=r : ∆+
∆= b

bp 10 , ∆+=ρ b1
1 ,

3) 0>r : ∆−

∆−

−
−= r

r

deb
edp)1(

0 , ∆−

∆−

−
−=ρ r

r

deb
edb)(.

The sum),,,(∆= dbnbdfS is then computed as:

S := 0
For i := 1 to n do

If Ber(p0) = 0 then S := S + Geom(ρ) + 1
 Return S.
Ber is the Bernoulli distribution, Geom the geometric distribution as defined p. 47.

 49

For constant birth and death rates, this computation is exact: whatever ∆ , the population size
computed from function bdf will have the same distribution as the continuous process. But in
most models b and d vary along time, and the value of the observation interval ∆ has to be
chosen accordingly. A possibility is to compute an adaptive ∆ so as to correctly track the
continuous process (see model ferriere1.zen for an example).

How to chose the observation interval ∆ ?
The birth-death process in continuous time is simulated by drawing iteratively a single birth
or death event affecting a randomly chosen individual: the date of the next event is computed

according to an exponential distribution with mean
dbn +

×
11 , and when the event has

occurred, population size goes from n to 1±=′ nn . When observing the continuous time
birth-death process at discrete time intervals, several events can occur in a single time step ∆ ,
driving population size from n to n′ . During the time step ∆ an average of

[]))(exp(1 ∆+−− dbn events occur. For small ∆ , about ∆+)(dbn events occur in average in

a time step. As a result, the value
dbn

k
+

×=∆
1 with nk ≤ can track variations in population

size of the order knn ±≈′ . This value of ∆ can however be time consuming for small k ,

while the value
db +

=∆
1 can lead to numerical instability. A compromise has to be found

between efficiency and accuracy.

Functions for evolutionary dynamics

Phenotypes

The following functions allow to retrieve information from a group G containing P
phenotypes. They are to be used outside the declaration of the concerned group.

x is a local group variable declared in group G

groupcardf(G) number P of phenotypes in group G.

grouppopf(G) total number N of individuals in group G, with P phenotypes

and)(in individuals in each phenotype (i): ∑
=

=
P

i

inN
1

)(.

groupgrowthf(G) growth rate of phenotypes in group G, computed at time t as

 






 −

t
DBLn

exp , where B is the number of phenotypes created from t = 1

and D is the number of destroyed phenotypes.

grouplifetimef(G) average life duration of phenotypes in group G.

groupmeanf(x) mean value m of variable x over all individuals in group G,

with)(in individuals in phenotype (i) and)(ix the value of x in

 50

phenotype (i): ∑
=

=
P

i

ii nxNm
1

)()(1

groupmaxf(x) maximum value a of variable x over all phenotypes (i) in group G:
)(max)(i

i
xa =

groupminf(x) minimum value b of variable x over all phenotypes (i) in group G:
)(min)(i

i
xb =

Ecological interactions

The following functions allow to compute ecological interactions between phenotypes within
a group or across groups.

groupsumf(G,exp) value S of the sum of expression exp over all individuals in group G,

with)(in individuals in phenotype (i) and)(ia the value of exp in

phenotype (i):)(

1

)(i
P

i

i naS ∑
=

=

groupsum1f(G,exp) value S1 of the sum of expression exp over all phenotypes in group G,

with)(ia the value of exp in phenotype (i): ∑
=

=
P

i

iaS
1

)(
1

focalf(s) value of group variable s, or adaptive trait s,

from the focal phenotype (i) in group G

note: function focalf is not to be used outside of a group.

For example, assume that ecological interactions between 2 phenotypes in group G, with
adaptive traits s1 and s2, are given by a function α(s1,s2). Then the environment perceived
(the selection pressure experienced) by a focal phenotype (i) with trait)(is is computed as

)()(

1

)()(),(ij
P

j

ii nssA ∑
=

α= .

The corresponding declaration within group G with adaptive trait s is

defvar a = groupsumf(g, alpha(focalf(s),s)

Function alpha is defined outside group G as

 deffun alpha(s1,s2) = (…)

 51

Triggering of mutations

magicf(xa, …, xz) xa, …, xz variables

Any variable that is not a constant or a relation-variable can trigger mutations, and this is used
to control for the triggering of mutations inside a time step (see defmut and the trigger
keyword in section 3). Let u be a triggering variable. The hierarchy of ZEN variables (see the
update procedure in section 3) is constructed in such a way that the mutations corresponding
to u are triggered as soon as u is updated, and before any variable depending on u is updated.
The aim of the magicf function is to help with this feature. When u is used as a triggering
variable, declaring

 defvar u = magicf(xa, …, xz)

ensures that u is updated as soon as variables xa, …, xz have been updated (as well as all
variables lower than xa, …, xz in the hierarchy), and not before. Any variable depending on
xa, …, xz (as well as any variable above xa, …, xz in the hierarchy) will be updated after u.

Date of creation of phenotype

datef(x) date of creation of focal phenotype, x any group variable
 the date is the one given by option Phenotypes in the Variable | All panel

note: function datef is not to be used outside of the group scope. Any variable pertaining to
the group may be used.

 52

TECHNICAL NOTICE

Computer PC, MAC
System Windows, Linux, MAC OSX
Minimal memory required 128 M
Programming language Object Pascal – Borland Delphi 6 & Kylix
Source code size ~ 13000 lines
Exec code size ~ 800 K

+ 4000 K runtime library qtintf.dll

Program bounds

General
maximum number of models in the same model file 5
maximum size of models (number of relations) 100
maximum number of relations (total) 500
maximum number of variables 5000

Evolutionary
maximum number of groups 10
maximum size of groups (number of relations) 30
maximum number of adaptive traits per group 20
maximum number of variables per group 200
maximum number of coexisting phenotypes 20000

Graphics
maximum number of graphics windows 6
maximum number of trajectories per window 4
best graphic resolution in number of time steps ≤ 10000
resolution for the distribution of phenotypes 600×600

Text
maximum number of text windows 6
maximum number of variables per window 16 (4 for Monte Carlo)
maximum number of lines per window 10000 for Monte Carlo

File
maximum number of output text files 5
maximum number of variables per file 10

 53

ZEN DISTRIBUTIONS

Web site http://www.biologie.ens.fr/~legendre/zen/zen.html

Computer / System DOWNLOAD Comments

PC Windows

Self-extracting file

autozen.exe

Program file

zen.exe

The Windows distribution also contains
a console (no graphics) version

zenc.exe

PC Linux

Compressed archive

zen.tar.gz
expanded using

command
tar -xzf zen.tar.gz

Program file

zen

For installation, consult file
ZenLinuxInstall.txt

The Linux version is identical to the

Windows version.

The Linux distribution also contains a
console (no graphics) version

zenc

MAC OS X

Compressed archive

zenc_mac.zip

Program file

zenc

Console version (no graphics)

 54

BIBLIOGRAPHY

• Benton MJ & PN Pearson. 2001. Speciation in the fossil record. Trends in Ecology and

Evolution 16:405-411.
• Caswell H. 2000. Matrix population models. Second edition. Sinauer, Mass., USA.
• Champagnat N, R Ferrière & G Ben Arous. 2001. The canonical equation of adaptive

dynamics: a mathematical view. Selection 2:73-83.
• Dieckmann U & R Law. 1996. The dynamical theory of coevolution: a derivation from

stochastic ecological processes. Journal of Mathematical Biology 34:579-612.
• Dieckmann U, P Marrow & R Law. 1995. Evolutionary cycling in predator prey

interactions: Population dynamics and the Red Queen. Journal of Theoretical Biology 176:
91-102.

• Dieckmann U & M Doebeli. 1999. On the origin of species by sympatric speciation.
Nature 400:354-357.

• Doebeli M & U Dieckmann. 2003. Speciation along environmental gradients. Nature
421:259-264.

• Eshel I & U Motro. 1981. Kin selection and strong stability of mutual help. Theoretical
Population Biology 19:420-433.

• Ferrière R & M Gatto. 1995. Lyapunov exponents and the mathematics of invasion in
oscillatory or chaotic populations. Theoretical Population Biology 48:126-171.

• Ferrière R, F Sarrazin, S Legendre & J-P Baron. 1996. Matrix population models applied
to viability analysis and conservation: Theory and practice with ULM software. Acta
Œcologica 17:629-656.

• Ferrière R, JL Bronstein, S Rinaldi, R Law & M Gauduchon. 2002. Cheating and the
evolutionary stability of mutualisms. Proceedings of the Royal Society of London B: 269,
773-780.

• Ferrière R, U Dieckmann & D Couvet eds. 2004. Evolutionary Conservation Biology.
Cambridge University Press.

• Geritz SAH, E Kisdi, G Meszéna & JAJ Metz. 1998. Evolutionarily singular strategies and
the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology 12:35-
57.

• Hamilton WD. 1963. The evolution of altruistic behaviour. The American Naturalist
97:354-356.

• Hamilton WD. 1964. The genetical evolution of social behaviour. I & II. Journal of
Theoretical Biology 7:1-16, 17-52.

• Kisdi E. 1999. Evolutionary branching under asymmetric competition. Journal of
Theoretical Biology 197:149-162

• Kisdi E & SAH Geritz. 1999. Adaptive dynamics in allele space: evolution of genetic
polymorphism by small mutations in a heterogeneous environment. Evolution 53:993-
1008.

• Kisdi E & SAH Geritz. 2001. Evolutionary disarmament in interspecific competition.
Proceedings of the Royal Society 268 B: 2589-2594.

• Lande R. 1982. A quantitative genetic theory of life history evolution. Ecology 63:607-
615.

• Law R, JL Bronstein & R Ferrière. 2001. On mutualists and exploiters: Plant-insect
coevolution in pollinating seed-parasite systems. Journal of Theoretical Biology 212, 373-
379.

 55

• Legendre S. 2004. Influence of age structure and mating system on population viability. In
Evolutionary Conservation Biology, Ferrière R, U Dieckmann & D Couvet eds.,
Cambridge University Press, pp. 41-58.

• Massin N & A Gonzales. 2005. Adaptive radiation in a fluctuating environment:
disturbance affects the evolution of diversity in a bacterial microcosm.

• Maynard Smith J. 1966. Sympatric speciation. American Naturalist 100:637-650.
• Maynard Smith J. 1982. Evolution and the theory of games. Cambridge University Press.
• Metz JAJ, RM Nisbet & SAH Geritz. 1992. How should we define fitness for general

ecological scenarios? Trends in Ecology and Evolution 7:198-202.
• Metz JAJ, SAH Geritz, G Meszéna, FJA Jacobs & JS van Heerwaarden. 1996. Adaptive

dynamics, a geometrical study of the consequences of nearly faithful reproduction. In
Stochastic and spatial structures of dynamical systems, J van Strien & SM Verduyn Lunel
eds., KNAW Verhandelingen, North Holland, Amsterdam, pp 183-231.

• Meszéna G, E Kisdi, U Dieckmann, SAH Geritz & JAJ Metz. 2001. Evolutionary
optimisation models and matrix games in the unified perspective of adaptive dynamics.
Selection 2:193-210.

• Møller AP & S Legendre. 2001. Allee effect, sexual selection and demographic
stochasticity. Oikos 92:27-34.

• Morlon H & S Legendre. Unpublished manuscript. A model of sexual selection using
adaptive dynamics: The Fisher’s runaway and its reversibility.

• Page K & M Novak. 2002. Unifying evolutionary dynamics. Journal of Theoretical
Biology 219:93-98.

• Rainey PB & M Travisano. 1998. Adaptive radiation in a heterogeneous environment.
Nature 394:69-72.

• Ravigné V. 2000. Spéciation et sélection de l’habitat. Rapport de DEA, Institut des
Sciences de l’Evolution, Université de Montpellier II.

• Ronce O & I Olivieri. 1997. Evolution of reproductive effort in a metapopulation with
local extinctions and ecological succession. American Naturalist 150:220-249.

• Rozen DE & RE Lenski. 2000. Long-term experimental evolution in Escherichia coli.
VIII. Dynamics of a balanced polymorphism. American Naturalist 155:24-35.

• van Baalen M. 1998. Coevolution of recovery ability and virulence. Proceedings of the
Royal Society of London B 265:317-325.

• van Baalen M & D Rand. 1998. The unit of selection in viscuous populations and the
evolution of altruism. Journal of Theoretical Biology 193:631-648.

• van Baalen M. 2000. Pair approximations for different spatial geometries. In The geometry
of ecological interactions: simplifying spatial complexity, JAJ Metz & U Dieckmann, eds.
Cambridge University Press, pp 359-387.

• van Doorn GS & FJ Weissing. 2001. Ecological versus sexual selection models of
sympatric speciation: A synthesis. Selection 2:1-2, 17-40.

• Wilke CO & C Adami. 2002. The biology of digital organism. Trends in Ecology and
Evolution 17:528-532.

