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1 FIRST STEPS

1.1 Contents of ULM distribution

ulm.exe or ulm ULM program (Windows® and Linux/macOS® respectively)
ulmc.exe or ulmc console (no graphics) version
ulmref.pdf reference manual

1.2 Run

The ULM program should have been installed from the compressed archive (ulm.zip
under Windows®, ulm.tar.gz under Linux, ulm.dmg under macOS®) in a directory
ulm.

• Open the ULM program.

• From the ULM main window, use the option File | New from example or the button
to load an example model (the list of models is provided in Table 1.1). This opens

the Model files window where the model is displayed. Models can be edited in this
window.

• Click the Compile button . Click the Run button .

To develop your own model you can either:

• Load an example model that is close to your model of interest. In this way, you shall
get used to the ULM syntax. Modify the example model using the editing facilities of
the Model files window, save it with the extension ulm (e.g. my_model.ulm).

• You can alternatively use a text editor to create your model file.

To stop execution of the program, use the Stop button .

1.3 Example models provided with ULM

See Table 1.1 for the list of all example models provided with ULM. Those models can be
loaded using the New from example button . If you are compiling ULM from source, they
are located in the models/ directory. Most models follow the following convention:

• Suffixed with 0: constant matrix model (e.g. droso_0.ulm)

• Suffixed with 2: 2-sex model (e.g. bigh_02.ulm)

• Suffixed with m: multisite model (e.g. gull_0m.ulm)

• Suffixed with g: size-classified model (e.g. kwha_0g.ulm)

• Suffixed with d: density-dependent model (e.g. droso_d.ulm)

• Suffixed with e: model with environmental stochasticity (e.g. bigh_2se.ulm)

• Suffixed with s: model with demographic stochasticity (e.g. pass_2s.ulm)
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allee.ulm probability of mating
astrocaryum_mexicanum_0.ulm complex life cycle for the palm tree Astrocaryum mexicanum

bigh_02.ulm 2 sex life cycle for Bighorn sheep Ovis canadensis
bigh_2se.ulm stochastic 2 sex model for Bighorn sheep

curv.ulm display various curves in the plane
dipsacus_sylvestris_0 complex life cycle for the teasel Dipsacus sylvestris

droso_0.ulm life cycle for the fruit fly Drosophila melanogaster
droso_d.ulm model with density dependence and contamination for

Drosophila melanogaster
griza_0.ulm life cycle for the Grizzly bear Ursus arctos horribilis (increas-

ing population)
griza_2s.ulm 2-sex life cycle with demographic stochasticity for Grizzly

bear
griza_2sd.ulm 2-sex life cycle with demographic stochasticity and density

dependence for Grizzly bear
griza_2se.ulm 2-sex life cycle with demographic and environmental stochas-

ticity for Grizzly bear
grizb_0.ulm life cycle for Grizzly bear Ursus arctos horribilis (declining

population)
grizb_2s.ulm 2-sex life cycle with demographic stochasticity for Grizzly

bear
grizb_2sd.ulm 2-sex life cycle with demographic stochasticity and density

dependence for Grizzly bear
grizb_2se.ulm 2-sex life cycle with demographic and environmental stochas-

ticity for Grizzly bear
gull_0m.ulm multisite model for Black-headed gull

henon.ulm Hénon attractor
henon.ulm Hénon attractor

kwha_0g.ulm size-classified life cycle for Killer whale
kwha_sg.ulm model with demographic stochasticity for Killer whale
lorenz.ulm Lorenz attractor
met_0.ulm life cycle for the spider Metepeira datona

met_esd.ulm extinction dynamics for the spider Metepeira datona
pass_0.ulm generic life cycle for passerine

pass_02.ulm 2-sex life cycle for passerine
pass_2s.ulm 2-sex model with demographic stochasticity for passerine
passa_0.ulm post-breeding census life cycle for passerine
qsd_sd.ulm study of quasi-stationary distribution
regis.ulm density dependence with chaotic dynamics
regis.in command file for model file regis.ulm

snowg_0.ulm life cycle for the snow goose Chen caerulescens atlantica
usa_0.ulm life cycle for the USA population

variation_extinction.ulm study of extinction and recolonization events
vult_0.ulm life cycle for the griffon vulture Gyps fulvus
vulta_0.ulm release strategies for vulture populations
vultb_0.ulm release strategies for vulture populations
vult_2se.ulm 2-sex model with demographic and environmental stochas-

ticity for vulture

Table 1.1: Example models.
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2 UNIFIED LIFE MODELS

The ULM computer program has been designed to study population dynamics, with
applications to evolutionary and conservation biology. Matrix population models, and
deterministic or stochastic relations in discrete time can be explored interactively by means
of simple commands and convenient graphics.

Density dependence, environmental stochasticity, demographic stochasticity, and mi-
grations can be taken into account. Some theoretical knowledge about matrix population
models and population dynamics [Caswell, 1989, Caswell, 2001] is required to build model
files, but the ULM program is easy to use.

The biological system under study is described in a text file, the model file, using a reduced
declaration language, and appropriate mathematical functions. The ULM program is run
with the model file as input. The model can then be studied via population trajectories,
matrix properties, sensitivities, Monte Carlo simulations. The ULM kernel is a symbolic
evaluator.

The main point of ULM is that population dynamics can be modeled finely, with plain
knowledge of what is simulated, and without heavy programming.

Author

Stéphane Legendre
Team of Mathematical Eco-Evolution

École Normale Supérieure
46 rue d’Ulm

75000 Paris – France
legendre@ens.fr

Contributors Guillaume Chapron, Jean Clobert, Régis Ferrière, Frédéric Gosselin, Jean-
Dominique Lebreton, François Sarrazin, Karl-Michael Schindler, Alexis Simon.

ULM development team François Bienvenu, Guilhem Doulcier, Hugo Gruson, Maxime
Woringer.

Distribution The ULM computer program is distributed as a free/open source software
under the GNU General Public License version 3 (GNU GPLv3). Users are under their own
responsibility.
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3 PROJECTING POPULATIONS

3.1 The life cycle

The first step for studying population dynamics of a species in discrete time is to build the
life cycle. The life cycle is a macroscopic description of an organism within a population, by
means of stages and transitions between stages. It incorporates the genotype and part of the
phenotype.

We use a generic model for passerine as example [Legendre et al., 1999]. The model is
female-based, with 2 age classes. It is assumed that survival rates are computed from
counts of individuals just before reproduction (pre-breeding census). The first age class
is constituted of subadults, aged (almost) one year. The second age class is constituted of
adults, aged 2 years and more. Subadult females reproduce with fecundity f1, and adult
females reproduce with fecundity f2.

S As

s0σ f2s0σ f1

v

3.2 The population matrix

Let n1(t ) the number of subadults at time t , and n2(t ) the number of adults at time t . Then:

n1(t +1) = s0σ f1n1(t )+ s0σ f2n2(t ).

Indeed, at time t +1, n1(t +1) individuals aged one year are born from n1(t) subadults at
time t , and n2(t ) adults at time t . Newborn individuals survived with juvenile survival rate
s0. To take account of females only, the numbers are multiplied by the primary female sex
ratio σ(σ= 0.5). Similarly:

n2(t +1) = sn1(t )+ vn2(t )

as the number n2(t +1) of adults at time t +1 is the number of subadults that survived with
rate s, plus the number of adults that survived with rate v .

These two relations can be put in matrix form:[
n1

n2

]
t+1

=
[

s0σ f1 s0σ f2

s v

][
n1

n2

]
t

,
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or
N (t +1) = AN (t ),

with N (t ) the population vector at time t , and A the (constant) population matrix. Popula-
tion size at time t is the sum of the vector entries: n(t ) = n1(t )+n2(t ).

From these equations, the syntax of the corresponding ULM example model pass_0 is
straightforward. ULM keywords are written in bold, comments are added on the right. Note
that declarations are separated by blank lines.

defmod passerine(2) model declaration, 2 age classes
mat: a name of population matrix
vec: w name of population vector

defvec w(2) population vector
n1, n2

defmat a(2) population matrix
sigma*s0*f1, sigma*s0*f2
s, v

defvar n1 = 10 initial number of subadults

defvar n2 = 10 initial number of adults

defvar n = n1 + n2 total population size

defvar s0 = 0.2 juvenile survival rate

defvar s = 0.35 subadult survival rate

defvar v = 0.5 adult survival rate

defvar sigma = 0.5 primary female sex ratio

defvar f1 = 7 subadult female fecundity

defvar f2 = 7 adult female fecundity

The declaration language is described in Section 4. Load the example passerine model
passa_0 (using the New from example button ) for post-breeding census. The model
has 3 age classes.

3.3 Running the model

• Load the example model pass_0 using the New from example dialog . A new file
containing the model appears in the Model file window. (Note: You can modify it and
save your modifications in a .ulm file).
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• Click the Compile button . The file is processed (checked for syntactic errors), and
can now be studied interactively.

• Click the Run button . The model is run for 50 time steps (the default). Population
trajectories are displayed in graphic window #1 (Figure 3.1). In the large panel of the
main window, the number n1 of subadults and the number n2 of adults are displayed
every 10 time steps.

> Run 50
t = 10

n1 = 35.06
n2 = 20.28

t = 20
n1 = 95.14
n2 = 55.04

t = 30
n1 = 258.2
n2 = 149.4

t = 40
n1 = 700.5
n2 = 405.3

t = 50
n1 = 1901
n2 = 1100

Model passerine -> pop = 3000.4
growth rate from [t = 0] -> 1.105409

Starting from 20 individuals at time t = 0 (as specified in the model file), the population
reaches 3000 individuals at time t = 50. The corresponding growth rate is 1.10.

• Click the Settings button in graphic window #1 to parameterize the graphics.
Replace n1 by n (total population size) and remove n2. Click OK.

• Click the Init button . The system is initialized (t = 0). Select option Run | Settings.
Set Number of time steps to 20 (instead of 50). Click OK.

• Click the Run button . Total population size n is displayed in graphic window #1
for 20 time steps.

The previous commands could have been executed by typing in the small Interpreter
panel of the main window:

? graph t n set graphics to display n along time t
? init initialize (t = 0)
? run 20 run for 20 time steps
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Figure 3.1: Subadult (green) and adult (blue) population sizes along time for the passerine
model (modelpass_0), showing exponential growth and stable age distribution.

3.4 Matrix properties

For constant matrix models like pass_0, population dynamics are entirely known from
algebraic properties of the matrix.

• Click the Matrix property button to get the Matrix properties window. The domi-
nant eigenvalue lambda of the population matrix a is 1.10498.

Growth rate The dominant eigenvalue λ = 1.10498 is the long-term growth rate of the
population. Indeed, for large t we have:

n(t +1) ∼λn(t ), and n(t ) ∼Cλt n(0) ,

where C is a constant precised below. These equations mean that the population increases
or decreases geometrically with rate λ. From the second equation an estimator of the growth
rate is computed:

λ̂= exp

[
ln(n(t ))− ln(n(0))

t

]
(3.1)
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This estimator is displayed when the model is run (see previous section). For population
matrices, which are non negative, the dominant eigenvalue exists in most cases.

• In the central panel of the Matrix properties window the right eigenvector W =
[0.63,0.37] of the matrix with respect to the dominant eigenvalue λ is displayed.

Stable age distribution The right eigenvector W is the stable stage distribution. Let W (t ) =[
n1(t )
n(t ) , n2(t )

n(t )

]
be the population structure at time t , that is the proportion of individuals in

stages. As t gets large, we have W (t) →W . In an age-classified model, W is the stable age
distribution. At demographic equilibrium, the passerine population is constituted of 63 %
subadults and 37 % adults.

• In the small Interpreter panel type the following commands:

? newvar p1 n1/n create new variable p1, proportion of individuals in age class 1
? newvar p2 n2/n create new variable p2, proportion of individuals in age class 2
? graph t p1 p2 set graphics to display p1 and p2 along time t
? yscale 0 1 fix bounds on Y axis
? run 20 run for 20 time steps

This illustrates the convergence of age structure towards the stable age distribution.

• In the central panel of the Matrix properties window the left eigenvector V = [0.46,0.54]
of the matrix with respect to the dominant eigenvalue λ is displayed.

Reproductive value The left eigenvector V is the reproductive value. It reflects the contri-
bution of each class to population size.

• In the small Interpreter panel type the following commands:

? change n1 20 change initial number of subadults to 20
? change n2 0 change initial number of adults to 0

total initial population size is still n(0) = 20
? run 50 run for 50 time steps
Model passerine -> pop = 2782.0
? change n1 0 change initial number of subadults to 0
? change n2 20 change initial number of adults to 20

total initial population size is still n(0) = 20
? run 50 run for 50 time steps
Model passerine -> pop = 3218.9
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This illustrates that introducing adults leads to a larger population size than introducing
the same number of subadults. Adults have a larger reproductive value. The exact formula
is:

n(t ) ∼ 〈V ,W (0)〉λt n(0)

with the dot product C = 〈V ,W (0)〉. The long-term population size depends on the initial
population size n(0), on the initial proportions of individuals in age classes (the initial popu-
lation structure W (0)), and on the reproductive value V . The growth rate λ is independent
of initial population size or structure.

3.5 The survival-fertility decomposition of the projection matrix

The projection matrix A associated with the life cycle graph of the species can be decom-
posed A = S +F . Here F is the matrix of reproductive transitions, those that lead to the
production of offspring: the entry fi j of F is the expected number of class i offspring at
time t+1 produced by an individual in class j at time t . S is the matrix of survival transitions:
the entry si j of S is the probability that an individual in stage j at time t is alive and in stage i
at time t +1.

This decomposition allows to compute several demographic descriptors for a complex life
cycle, one that is not age-classified, e.g. a size-classified one. The reproductive transitions
can be specified by appending the character ‘#’. For example, the population matrix for
the teasel Dipsacus sylvestris (load example model dipsacus_sylvestris_0 using the
button ) is declared with 4 reproductive transitions:

defmat a(6)
0, 0, 0, 0, 0, 322.38#
0.966, 0, 0, 0, 0, 0
0.013, 0.010, 0.125, 0, 0, 3.448#
0.007, 0, 0.125, 0.238, 0, 30.17#
0.008, 0, 0.038, 0.245, 0.167, 0.862#
0, 0, 0, 0.023, 0.750, 0

3.6 Sensitivities

When a parameter x of the model is varied by an amount ε, the growth rate λ changes by an
amount εSx , where Sx = ∂λ

∂x is the sensitivity of λ to changes in x. When a parameter x of the
model is varied by α%, the growth rate λ changes by αEx%, where Ex = x

λSx is the elasticity
of λ to changes in x. Elasticity is similar to sensitivity, but takes the size of the parameter
into account. Sensitivities and elasticities allow to determine which parameters have the
greatest impact on population growth. This is important for population management
and conservation, in relation with environmental impact on demographic parameters.
Sensitivities also have an interpretation in terms of the selective value of phenotypic traits.
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• Select option Matrix | Sensitivities to get the Sensitivities window where sensitivities
and elasticities of λ to changes in matrix entries are displayed. Type s in the Sensitivity
to variable panel, then <return>. The sensitivity of λ to changes in subadult survival
rate s obtains Ss = 0.6931, and the elasticity obtains Es = 0.2195.

The computation can be done for adult survival rate v , juvenile survival s0, fecundities f1,
f2. It is found that juvenile survival s0 is by far the most sensitive parameter with Ss0 = 3.309,
and Es0 = 0.599, as is the case for short-lived bird species. The following formula holds
[Houllier and Lebreton, 1986]: Es0 = 1

T̄
, with T̄ = 1.669 the mean generation length (see the

Matrix properties window).

• Click button to display the list of variables. Click in the expression for s0. Change
the constant value 0.2 by 0.21, a 5 % change in s0. Type <return>. Select the Matrix
properties window. The value of lambda is updated to λ′ = 1.13813. By the definition
of elasticity Es0 , a 5 % increase in s0 induces a 0.05×0.599 = 0.03 = 3% increase in λ. It
is checked that λ′−λ= 1.13813−1.10498 = 0.03.

• In the Interpreter panel, type the following to go back to the reference value 0.2 of

juvenile survival s0 (or use the button):

? change s0 0.2

• Select option Matrix | Landscape to display λ-isoclines as a function of 2 parameters.
Provide juvenile survival rate s0 as Variable X, with Xmin = 0 and Xmax = 0.5. Provide
adult fecundity f2 as Variable Y, with Ymin = 0 and Ymax = 10. Click Exec. This
produces Figure 3.2.

3.7 Environmental stochasticity

Random fluctuations in the environment impact on vital rates, which can be considered
as stochastic processes. Stochastic models are studied via Monte Carlo simulation: a large
number M of trajectories is cast over some time horizon T . Statistics computed over this set
of trajectories give the probabilistic behavior of the population. We give a simple example,
using the model pass_0 (you can load it from the New from example dialog ).

• Click the View variable button . Change the constant expression 0.2 of s0 into
beta1f(0.2,0.15). Type <return>. Juvenile survival is now a stochastic variable drawn
according to a (variant of) beta distribution, with mean 0.2 and standard deviation
0.15. The beta distribution is used because it takes values in [0,1], which is convenient
for survival rates.
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Figure 3.2: Fitness landscape for the passerine model with juvenile survival rate s0 in X ,
and adult fecundity f2 in Y . The red isocline corresponds to the set of (s0, f2)
values giving the actual growth rate λ= 1.10498. The steepness of the isoclines
reflects the large sensitivity of s0 as compared to f2. A small change in s0 must be
compensated by a large change in f2 to maintain the growth rate.

• Select the Settings button in the graphic window. Set the graphics to display s0

along time t . Click OK. Click the Run button . The stochastic trajectory of s0

appears in the graphic window.

• Change the graphic settings to display population size n along time t . Click the

MonteCarlo button to run the Monte Carlo simulation (50 time steps, 100 trajec-
tories). The mean population size n̄(t ) is displayed in the graphic window. Relevant
informations appear in the main window (see command montecarlo in Section 4).

> Montecarlo 50 100
Mean value [SE]:

n1 = 491.1314 [332.6684]
n2 = 176.1816 [84.3060]

Model passerine (Extinction_threshold = 1.00)
Non extinct population size (pop*):
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min = 1.03
max = 40942.58
mean = 875.24
sigma = 4737.1001
SE = 543.3826

Probability of escape: 0.0000
Probability of extinction: 0.2400
Mean extinction time over extinct trajectories [SE]: 24.3333 [0.8586]

Stochastic growth rate: 1.000935
Logarithmic growth rate [SE]: 0.000934 [0.0055]
Growth rate of the mean pop: 1.072670
Mean growth rate2 [SE]: 1.023577 [0.006311]
Growth rate2 of the mean pop: 1.086248

Mean scaled population structure:
0.5396 0.4604

t pe(t) pop(t) SE pop*(t) SE
1 0.0000 23.8 1.1 23.8 1.1
2 0.0000 25.5 1.7 25.5 1.7
( ... )
48 0.2400 329.8 143.6 433.0 187.3
49 0.2400 445.2 216.1 584.4 282.5
50 0.2400 667.3 414.6 875.2 543.4

> Init

• pe (t ) = probability of extinction along time

• pop(t ) = mean population size (over all trajectories) along time

• pop∗(t ) = mean population size over non extinct trajectories along time

The probability of extinction at time t , pe (t), is computed as the ratio of the number of
trajectories that have gone extinct by time t , to the total number M of trajectories. The
standard error of variable x is SE = σ(x)p

M
, with σ(x) the standard deviation of x and M the

number of trajectories in the Monte Carlo.
In the stochastic model, the juvenile survival rate s0 has the same mean value as in the

constant model. However, because of random fluctuations in s0, the growth rate of the
population has decreased from λ= 1.10 to α= 1.0 (stochastic growth rate). The growth rate
of the mean population, β= 1.07, is not a relevant estimator. The inequalityα<β is (almost)
always verified.

3.8 Demographic stochasticity

Demographic stochasticity comes from the chance realization of life cycle transitions by
individuals. It is inherent to the demographic process, but its effects are more important
when population size is small. Demographic stochasticity is modeled by building a branch-
ing process on the matrix relations, using integer-valued distributions. The modeling of
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demographic stochasticity gives an individual-based feature to the simulation. Individuals
are not distinguished by their demographic parameters, that keep their average values, but
the fate of individuals is taken into account, via the chance realization of these average
parameters.

We use the example model pass_2s as example. The underlying linear model corre-
sponds to the pass_0 example, and to the 2-sex example model pass_02. All life cycle
transitions are subjected to demographic stochasticity. For life cycle transitions with a result
of 0/1 (like survival, sex ratio) the resulting number of individuals is computed using bino-
mial distributions, n′ = binomf(n, s). For reproductive transitions, the number of offspring
is computed by summing poisson samples, n′ = poissonf(n, f ). Some care is taken to com-
pute the number of matings. While model pass_0 was of matrix-type, models involving
demographic stochasticity such as pass_2s must be put in relation-type form. As in the
case of environmental stochasticity, the system is studied via Monte Carlo simulation.

• Load pass_2s using the New from example dialog .

• Click the Compile button . Click the Settings button in the graphic window to
parameterize the graphics. Replace nm1 by n, remove nm2, n f 1, n f 2. Replace the
actual bounds in Y by [0,400]. Select option Fix Yscale. In the General panel select
Superimpose. In the MonteCarlo panel, select 2 sigma. Click OK.

• Click the Run button . The model is run for 50 time steps. The population size
along time is displayed in the graphic window.

• Select option Run | Settings. Change Random generator seed from 1 to 2. The system is

initialized (init). Click the Run button . The model is run for 50 time steps, with
a different realization of the stochastic process, superimposed to the previous one.

Change Random generator seed to 3. Click the Run button .

• Select option Montecarlo | Settings (this is identical to Run | Settings). Change Random
generator seed from 3 to 1 (the default). Set Number of trajectories to 1000 (instead

of 100). Click OK. Click to run the Monte Carlo simulation (50 time steps, 1000
trajectories).

In the graphic window, the average trajectory with 2σ confidence intervals is superim-
posed to the previous realizations, which fall within the confidence intervals. The probability
of extinction along time appears in the main window.

• Click to open a text window. Click the Settings button in the text window. Replace
nm1 by nm, replace nm2 by n f , remove n f 1, n f 2. Set Sampling interval for text to 1

(instead of 10). Click OK. Click to run the Monte Carlo simulation (50 time steps,
1000 trajectories).

The mean values of the number of males and females along time are displayed in the Text
window, over all trajectories, and over non extinct trajectories, with standard errors (SE).
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3.9 Density dependence

Since resources are limited, the amount available to each individual shrinks as population
size increases, leading to density dependence. In the modeling of density dependence, vital
rates are regulated by the amount of resources (the carrying capacity K ), and by the number
of individuals in classes, according to some functional form.

In the following example with 2 age classes, example model regis, demographic param-
eters are regulated using a Ricker type function:

xd = x exp[−(a1n1 +a2n2)]

with x the value of the demographic parameter in absence of density, xd the regulated value.
The contribution of each class to density dependence is expressed by coefficients αi , with
αi proportional to 1/K .

• Load regis using the New from example dialog .

• Click the Compile button .

• Click button to run the model (50 time steps by default). Population trajectories
are displayed in the graphic window #1: n1 and n2 along time t .

• Click button to open graphic window #2. Select window #2, and move it so that

window #1 can be seen. Click the Settings button in window #2 to parameterize
the graphics. Change t to n1, n1 to n2, and remove n2. Select line off in the General
panel. Click OK.

• Click button in the main window to initialize the system (t = 0). Select option Run |
Settings. Change Number of time steps to 10000, change Dt text interp to 1000. Click

OK. Click to run the model for 10000 time steps, with output in the main window
every 1000 times steps. A strange attractor appears in window #2 (Figure 3.3),with the
corresponding population trajectories in window #1.

• Click button to view the variables. Change the expression of variable r to 50. Type

<return>. The system is initialized (init). Click the Run button . A single point
equilibrium is displayed (cover figure).

• Change r to 60. Type <return>. Click the Run button . A quasi-cycle is displayed.

• Select the Tools | Spectrum option. Change Variable to n. Click the Run button in the
Spectrum window. The power spectrum of population size is displayed, showing a
discrete set of frequencies. Change the expression of r to 115. Click the Run button in
the Spectrum window. A set of continuous frequencies appears.

• Select the Tools | Lyapunov option. Click the Run button in the Lyapunov window.
Estimators of the Lyapunov exponent r are given, showing the presence of weak chaos
(r > 0,r ∼ 0).
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Figure 3.3: Density dependent population dynamics produce this strange attractor (model
from [Cazelles and Ferrière, 1992]).

4 OBJECTS

ULM models are built from objects related by mathematical functions, and processed along
time by the ULM kernel. The models are described in an input text file (*.ulm file), using

a declaration language. The model file is processed by the Compile command ( ), and

searched for syntax errors. When the syntax is correct, the model can be run ( ).
There are 6 types of objects handled by the ULM kernel with corresponding keywords:

defmod declaration of model
defmat declaration of matrix
defvec declaration of vector
defrel declaration of relation
defvar declaration of variable
deffun declaration of function

Each object is referenced by a user chosen name (names begin with any letter ‘a’ to ‘z’).
Other keywords specify mathematical operators or functions (see Section 6).
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• Declarations of objects must be separated by blank lines.

• Lines beginning with ‘{’ are comment lines and are not processed.

• The model file must begin with the declaration of a model (defmod).

• The declaration of a model must precede the declarations of its associated object,
matrix and vector, or relations.

• Relations may be declared without any link to a model.

• All variables and functions must be declared explicitly.

• Letters are converted to low case; the interpreter is not case sensitive.

defmod declaration of model

A model describes a population whose dynamics are driven by a set of discrete time
relations. These relations can be put in matrix form, using a population matrix and a
population vector.

matrix-type model

defmod model_name(k) declaration of model of size k
mat: aaa name of matrix
vec: vvv name of vector

Example: file pass_0.ulm.

defmod passerine(2) model passerine of size 2
mat: a matrix a
vec: w vector w

The matrix and vector are to be declared elsewhere in the file, using the defmat and defvec
keywords.

relation-type model

defmod model_name(k) declaration of model of size k
rel: rel1, . . . , relk names of k relations

Example: file met_esd.ulm.

defmod metepeira_esd(5) declaration of model of size 5
rel: r1, r2, r3, r4, r5 5 relations: r1, . . . , r5

The relations are to be declared elsewhere in the file, using the defrel keyword.
A single model file may include several models.
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defmat declaration of matrix

defmat matrix_name(k) declaration of matrix of size k
a11, . . . , a1k first line of matrix entries
a21, . . . , a2k second line of matrix entries
...
ak1, . . . , akk k-th line of matrix entries

Example:
defmat a(2) 2×2 matrix for passerine model file pass_0.ulm
sigma*s0*f1, sigma*s0*f2 matrix entries
s, v

defvec declaration of vector

defvec vector_name(k) declaration of vector of size k
n1, . . . , nk names of k variables that are the vector entries

Example:
defvec w(2) population vector for passerine model file pass_0.ulm

n1, n2 names of vector variables

defrel declaration of relation

defrel relation_name
var_name = expression expression for the relation

Example: file pass_2s.ulm
defrel rm1
nm1 = binomf(pf1m+pf2m, sm0)

defrel rm2
nm2 = binomf(nm1, sm) + binomf(nm2, vm)

In this example, variables nm1 and nm2 are relation-variables. From one time step to the
next, relation-variables are updated in parallel (and not sequentially), as would be the case
in matrix form.

defvar declaration of variable

defvar variable_name = expression
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There is one and only one predefined variable, whose name is t for ‘time’. Variable t takes
values 0, 1, 2, . . . as the system is run. Other variables are declared by the user.

If variable_name is the name of a variable pertaining to a vector (vector-variable, defvec)
or to a relation (relation-variable, defrel), then expression must be a real number, which is
the initial value of the variable.

Examples:
defvar s0 = 0.2 constant

defvar n1 = 100 relation-variable with initial value 100

defvar phi = (1+sqrt(5))/2 constant

defvar x = gaussf(2, 0.1) random variable
normal distribution with mean 2 and standard deviation 0.1

defvar w = if(t > 10, x, 0) conditional

defvar n1 n2 = 100 shared declaration

deffun declaration of function

deffun function_name(arg1, . . . , argN) = expression

The arguments of the function have the names ar g 1, . . . , ar g N .

Examples:
deffun som(v, n) = (1 - vˆ(n+1)) / (1 - v) sum of a geometric series

deffun fac(n) = if(n, n*fac(n-1), 1) recursive definition of the factorial

deffun alpha(s1, s2) = c*(1 - 1/(1 + d*exp(-k*(s1 - s2))))
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4.1 The update procedure, from one time step to the next

At each time step of the ULM simulation, population matrices, population vectors, relations,
and variables are updated in a specific order given below.

• The right hand side expressions of all relations are computed.

– For matrix-type models, the entries of the associated matrices are computed,
then the product with the population vector.

– For relation-type models, the expressions of the associated relations are com-
puted.

– Expressions of relations that are not associated with a model are computed.

• Relation-variables and vector-variables are updated.

– Vector-variables associated with matrix-type models are updated.

– Relation-variables associated with model relations are updated.

– Relation-variables associated with other relations are updated.

• Time t is updated (t = t +1). All remaining variables are updated according to their
dependencies.

At initialization (init), the ULM program builds a hierarchy of all variables, according
to their dependencies. It is checked whether there are circular definitions of variables.
If this is the case, the message “cycling definition of variable xxx” warns the user that
the computations are not reliable. From the hierarchy an order of computation over all
variables is established. This order is used throughout the simulation to update the variables

consistently (use button to see the order of evaluation).
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5 COMMANDS

Once the ULM model file is compiled (using ), commands allow to study the model inter-
actively (run simulations, set graphics, . . . ). Most commands rely on clicking the appropriate

buttons (like to run the model, to initialize the model), and can be parameterized
using the appropriate Settings options (like Run | Settings). Most commands can also be
entered in the small Interpreter panel of the main window. The syntax is:

command_name p1 p2 . . .

where command_name is the name of the command, and p1, p2, . . . are parameters of the
command. For example, after typing:

run 100 10

the system is run for 100 time steps with output every 10 time steps in the large panel of the
main window. Trajectories are displayed in the graphic windows. Equivalently, select the
Run | Settings option, set Number of time steps to 100, and Dt text interp to 10. Then click the

Run button .
Parameters of commands are names, integer or real values, or may be empty. Each com-

mand can be abbreviated by a single character. For example,

graph t n1 n2 is equivalent to g t n1 n2

and sets the trajectories to be displayed in graphic window #1, in this case the values of
variables n1 and n2 along time t .

Graphics can also be parameterized using the Settings option in the graphic windows.
In this section, the list of commands is sorted in alphabetical order. The mention ‘on/off’

means that the command works in an on/off manner. For example, typing:

addgraph

allows to superimpose graphs in graphic window #1 (‘Addgraph ON’), and typing again

addgraph

disables this option (‘Addgraph OFF’).
The mention ‘graph’ indicates that the command is related with graphics. Optional

command parameters are between < >.
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5.1 Command file

ULM simulations can be performed in absence of the user using a command file, a text file
containing the commands you would have typed in the Interpreter panel.

Example 1 Command file associated with the example model regis

graph n1 n2 set graphics, phase portrait (n1, n2)
line set line OFF
run 10000 1000 run 10000 time steps, with results every 1000 time steps
savegraph regis.bmp save graphics (strange attractor) in bitmap file regis.bmp

Example 2 Command file associated with the example model pass_2s

graph t n set graphics
text t n set output of the main window
change nm1 2 set population size and structure
change nm2 2
change nf1 2
change nf1 2
change nf2 2
montecarlo 100 10000 run Monte Carlo simulation
change nm1 4 set population size and structure
change nm2 4
change nf1 4
change nf2 4
montecarlo 100 10000 run Monte Carlo simulation

File names are passed as parameters of the ULM program (ulm.exe under Windows, ulm
under Linux or macOS) with the following syntax:

ulm.exe model_file command_file output_file

Paths to parameter files refer to the directory where the ULM program is installed. For
example,

ulm.exe models/regis.ulm models/regis.in regis.out

The output text file is optional: if provided, results displayed in the main window will be
stored in it.

Several simulations with different model files can be grouped using a batch file (.bat file
under Windows, .sh shell script under Linux). Simply create a text file containing the
relevant commands for executing the ULM program.
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5.1.1 Windows

• Drag and drop the ulm.exe icon to the desktop, creating a shortcut to ulm.exe.

• Right click the shortcut to access to its properties, and add to the name of the program
(ulm.exe) the names of the files, for example,

C:/ulm/ulm.exe models/regis.ulm models/regis.in regis.out

• Double-click the shortcut to run the ULM simulation.

Example 3a Batch file associated with examples 1 and 2:

ulm.exe models/regis.ulm models/regis.in regis.out
ulm.exe models/pass_2s.ulm pass_2s.in pass_2s.out

The file name must have the .bat extension, for example MySimul.bat. In this example,
the batch file is located in the same directory as ulm.exe and pass_2s.in. The files
regis.ulm, regis.in and pass_2s.ulm are in the subdirectory models. Double-
click the batch file MySimul.bat to execute the simulations.

5.1.2 Linux

Open a terminal (shell) window, and type a command line specifying the ULM program
parameters. For example, assuming that you are in the directory where the program ulm is
located:

./ulm ./models/regis.ulm ./models/regis.in regis.out

Example 3b Shell script associated with examples 1 and 2:

./ulm ./models/regis.ulm ./models/regis.in regis.out

./ulm ./models/pass_2s.ulm pass_2s.in pass_2s.out

The file name must have the .sh extension, for example MySimul.sh. In this example,
the script is located in the same directory as ulm and pass_2s.in. The files regis.ulm,
regis.in and pass_2s.ulm are in the subdirectory models. Type

sh MySimul.sh

to execute the simulations.
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Addgraph on/off graph

abbreviation: +
other name: add
syntax: addgraph
function: Superimpose graphics
default: off

• Use option Superimpose in the graphic windows Settings .

• Graphic window #i can be selected using the window command.

note When addgraph is on, do not resize the graphic window.

Example file met_esd.ulm
? change nmax 200 change value of population ceiling
? graph t n plot population size n as a function of time t
? run 100 run 100 time steps
? yscale fix bounds in Y axis (current bounds)
? addgraph superimpose graphics

Addgraph ON
? change nmax 50 back to initial value of population ceiling

Init
? run 100 run 100 time steps

Appreciate how the trajectory separates from
the previous one once the population ceiling is reached

Border on/off graph

abbreviation: b
syntax: border
function: Graphic scales are drawn if on
default: on

• Use option Hide in the graphic windows Settings .

• Graphic window #i can be selected using the window command.

Changevar
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abbreviation: c
other name: change
syntax: change var expr
parameters: var variable name

expr mathematical expression
function: Replace actual expression of variable var by new expression expr .

System is initialized (init).

• Use button to display the model variables. The expression of any variable can be
changed by clicking in the corresponding field.

note Vector-variables and relation-variables must be set to a real number, which is their
initial value.

Example 1: file pass_2s.ulm
? graph t n plot population size n as a function of time t
? montecarlo 50 1000 run Monte Carlo simulation

probability of extinction pe = 0.616
? change s0 beta1f(0.2, 0.15) make juvenile survival rate s0 stochastic
? montecarlo 50 1000 run Monte Carlo simulation

probability of extinction pe = 0.911
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Confidence interval

function: For matrix models, compute standard deviationσλ of the growth rateλ, given the
standard deviations σi j on the non-zero matrix entries ai j , assumed to vary independently.
The formula, involving the sensitivities, is

σ2
λ =

∑
i , j

(
∂λ

∂ai j
σi j

)2

.

Assuming that λ follows a normal distribution, this provides the confidence interval λ±zσλ,
where z is chosen by the user.

By default, z = 1, giving a 68 % confidence interval. Entering z = 1.96 gives a 95 % confi-
dence interval.

• Select the Matrix | Confidence interval option to get the Confidence interval window,
in which the standard deviations σi j on the matrix entries can be entered (the σi j ’s
are set to 0.1 by default).

note This option is not accessible from the command line.

Confidence interval 2

function: For matrix models, compute the standard deviation σλ of the growth rate λ,
given standard deviations σxi on demographic parameters x1, . . . , xp , assumed to vary inde-
pendently. The formula is

σ2
λ =

p∑
i=1

(
∂λ

∂xi
σxi

)2

.

Assuming that λ follows a normal distribution, this provides the confidence interval λ±zσλ,
where z is chosen by the user.

By default, z = 1, giving a 68 % confidence interval. Entering z = 1.96 gives a 95 % confi-
dence interval.

• Select the Matrix | Confidence interval 2 option to get the Confidence interval 2 window,
in which the standard deviations σxi of the user defined demographic parameters can
be entered.

note This option is not accessible from the command line.
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Correlation graph

abbreviation: o
other name: correl
syntax: correl < var 1 > < var 2 >
function: Display cross-correlation of variables var 1 and var 2,

or autocorrelation of variable var 1, if var 2 is not provided.
The system is run for 400 time steps,
100 values of correlation are displayed.

• Select the Tools | Correlation option to get the correlation window, in which the number
of time steps and the number of values can be parameterized.

note var 1 and var 2 should correspond to stationary processes.
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Distribution on/off graph

abbreviation: u
other name: distrib
syntax: distrib < del t a >
parameter: del t a real number > 0
default: del t a = 1
function: Display distributions of variables specified by the graph command.

For variable x: number of values of x such that
del t a ∗ j 6 x < del t a ∗ ( j +1) for j = 1, . . . ,10000
For the run command, distribution along time.
For the montecarlo command,
distribution across trajectories at time horizon.

default: off

• Use alternatively option distrib in graphic windows Settings .

• Select option include 0 to include the value 0 in the distribution.

• Graphic window #i can be selected using the window command.

Example 1 file pass_2s.ulm
? graph t n note: t is dummy for distrib
? distrib 100 set distribution mode with delta = 100

Distribution mode ON
? run 100 display distribution of n(t ) along time
? montecarlo 100 1000 display distribution of n(t ) at time t = 100,

over 1000 trajectories

Example 2 file regis.ulm
? graph t n note: t is dummy for distrib
? distrib 0.1 set distribution mode with delta = 0.1

Distribution mode ON
? change r 50 lead to point equilibrium
? run 1000 1000 display distribution of n over 1000 time steps
? change r 60 lead to quasi-circle
? run 10000 display distribution of n over 10000 time steps
? change r 110 lead to chaos
? run 10000 display distribution of n over 10000 time steps
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Erase graph

abbreviation: e
other name: clear
syntax: erase
function: Clear graphics

(window #1 or graphic window selected by command window).

• Use alternatively button in graphic windows.
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File on/off

abbreviation: f
syntax: file file_name x1. . . xN
parameters: file_name name of file

x1, . . . , xN names of variables
function: Create text file file_name and store values of variables

in the file as the model is run (run or montecarlo command).
When the variable names are not given, the file file_name is closed.
Storage differ according to the run or montecarlo command.

For the run command The format of each line in the file is:

t v1 v2 ...vN

where v1, . . . , v N are the values of variables x1, . . . , xN at time t . There is a new line in the
file at each time step that is a multiple of the second parameter ∆ of the run command (see
run command). For example, with the command

? run 1000 10

values are stored every ∆= 10 time steps.

For the montecarlo command montecarlo T M , with T the number of time steps and M
the number of trajectories. The format of each line in the file is:

j v1 v2 ...vN

where v1, . . . , v N are the values of variables x1, . . . , xN at time T in the j -th trajectory ( j =
1, . . . , M). There is a new line in the file for each trajectory.

• Up to 5 files can be created in a session.

• Up to 10 variables can be stored simultaneously in a file.

• The path of the file can be specified (the default path is where the ULM program is
located, usually c:\ulm). Example:

? file c:\myfolder\myfile.txt x1 x2.

The number of digits after the decimal point can be specified using the separator ‘:’
(the default precision is 4). For example, after the command
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? file myfile.txt x1:10 x2

variable x1 will be stored with 10 digits after the decimal point, and variable x2 with 4
digits after the decimal point.

Example 1: model file regis.ulm
? newvar lamb lambdaf(1,1) create new variable lamb whose value is the

dominant eigenvalue of the model
? file regis.txt lamb:6 open file regis.txt to store variable lamb

(precision = 6)
File regis.txt opened

? run 100 1 run model (100 time steps, ∆= 1)
( . . . ) values are stored in the file every time step (∆= 1)

? file regis.txt close file regis.txt
File regis.txt closed

File regis.txt looks:
0 4.902861
1 4.902861
2 0.183002
3 1.897385
4 3.756156
5 0.103296
6 0.969797
( . . . )

Example 2: model file allee.ulm
? file allee.txt p0 p1 open file allee.txt to store variables p0 and p1

File allee.txt opened
? montecarlo 100 100 run model (100 time steps, 100 trajectories)

(. . . ) values are stored in the file for each trajectory
? file allee.txt close file allee.txt

File allee.txt closed

File allee.txt looks:
1 0.9800 0.8600
2 0.7800 0.7800
3 0.9200 0.9200
4 0.9000 0.7400
( . . . )
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Graph graph

abbreviation: g
syntax: graph x y1. . . y N
parameters: x, y1, . . . , y N names of variables
function: Display variables y1, . . . , y N as a function of variable x

in graphic window.
If distribution mode is on, distributions of y1, . . . , y N are displayed.

See also addgraph, border, distribution, erase, line, savegraph, window, xscale, yscale

• Up to 6 graphic windows, numbered #1 to #6, can be created using button .

• Each graphic window can be parameterized using the Settings option .

• The graph command operates on window #1 unless window #i has been selected
using the window command. It is useful in command files.

Note When the number of time steps is larger that 10000, a sampling of the trajectories is
performed (see Dt in the graphic window status bar). For example, for 100000 time steps a
point is taken every Dt = 10 time steps.

Example 1: file regis.ulm
? graph n1 n2 set graphics for phase portrait
? change r 110 change bifurcation parameter
? run 10000 1000 display strange attractor
? change r 60 change bifurcation parameter
? run 10000 display limit cycle

Example 2: file met_esd.ulm

• Click button in graphic window. Change n1 to nt t , change n2 to nmax, remove
n3, n4. Click OK.

• In the small Interp panel of the main window, type ‘run 100’. Appreciate how the
trajectory of nt t is bounced when the population ceiling nmax is overshot.

• Type ‘init 2’. Click the Run button to display another realization of the process.

32



Help

abbreviation: h or ?
syntax: help < xxx >
parameters: xxx name of command or mathematical function
function: Give succinct on line information about commands

and mathematical functions
help: list of all commands and mathematical functions.
help xxx: short description of command xxx or
mathematical function xxx.

Example

? help lambdaf

lambdaf(i,j)
modulus of jth eigenvalue of ith model
(in the order of declaration)
domain: 1 <= i <= model_nb
1 <= j <= size of ith model
lambdaf(i,1) = dominant eigenvalue of ith model
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Init

abbreviation: i
syntax: init <j>
parameters: j integer ≥ 0, random generator seed
function: init: initialize t = 0, variables are reset to their initial values,

random generator is reset to its initial value (called seed).
init j: init + seed initialized to j , corresponding to
the j -th trajectory of the Monte Carlo procedure.
init 1: init + back to the default seed ( j = 1).

Note init is performed automatically after the following commands: changevar, monte-
carlo, newvar.

• Command init can be performed using button in the main window.

• The random generator seed can be set using the Run | Settings option.

Example file pass_2s.ulm
? graph t n
? init

Init
? montecarlo 50 100 give probability of extinction estimate

( . . . ) pe = 0.68 (at time 50)
? init 500

random generator seed -> 500
Init

? montecarlo 50 100 another estimation
( . . . ) pe = 0.60

? init 1
random generator seed -> 1
Init

? montecarlo 50 1000 back to first simulation, better estimate
( . . . ) pe = 0.616

? init 500
random generator seed -> 500
Init

? montecarlo 50 1000 back to 2nd simulation, better estimate
( . . . ) pe = 0.615
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Line on/off graph

abbreviation: l
syntax: line <col>
parameters: col integer in [1, . . . ,16], line color
function: If on lines of color col are drawn

between consecutive points in graphic window #1
(or window #i specified by the window command).
Useful in command files.

default: on

• Use alternatively option line off in graphic windows Settings .

• Use color specification in graphic windows Settings , by clicking on the colored
button next to the graphic variables panels Y1 Y2 Y3 Y4.

Example file pass_2s.ulm
? graph t n
? line 1
? yscale 0 400
? run 50 display red trajectory
? addgraph
? line 2
? init 2
? run 50 superimpose green trajectory
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Lyapunov

abbreviation: q
syntax: lyap < model >
parameters: model name of a model (default first model)
function: Compute an estimator of the first Lyapunov exponent r

of model model . The system is run for 1000 time steps,
with output every 100 time step.
r < 0 ⇔ fixed point equilibrium or cycle
r ∼ 0 ⇔ quasi-cycle
r > 0 ⇔ chaos

Note The command is intended for deterministic regulated systems. For a constant matrix,
r = ln(λ), λ the dominant eigenvalue of the matrix.

• Select the Tools | Lyapunov option to get the Lyapunov exponent window, in which the
number of time steps and the time lag for output can be parameterized.

Example file regis.ulm
? change r 50
? lyap estimator of the lyapunov exponent (r < 0, point equilibrium)
? change r 60
? lyap estimator of the lyapunov exponent (r ∼ 0, quasi-cycle)
? change r 110
? lyap estimator of the lyapunov exponent (r > 0,r ∼ 0, weak chaos)
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Montecarlo

abbreviation: m
other name: monte
syntax: montecarlo T M <Ext> <Esc>
parameters: T integer > 0, number of time steps

M integer > 0, number of trajectories
E xt real number > 0, extinction threshold (default E xt = 1)
E sc real number > 0, escape threshold (default E sc = 107)

function: Monte Carlo simulation.
M trajectories are run over a time horizon of T time steps.
System is initialized at the end (init).

• Monte Carlo simulation is parameterized using the MonteCarlo | Settings option.

• Monte Carlo graphics are parameterized using the Settings option in the graphic
windows.

• Monte Carlo outputs are parameterized using the option Settings in the text win-
dows.

• Press Ctrl-Alt simultaneously to break simulation (with the main window selected).

Notes

• Mean trajectories over M trajectories are displayed in the graphic windows (with min,
max and ±2σ intervals if requested).

• Mean values along time with standard errors are displayed in the text windows (in-
cluding or excluding extinct trajectories).

• If distribution mode is on, distributions of trajectories at time T are displayed.

• j -th trajectory whose population size n j (t) < E xt is declared extinct (at time t), but
computed to the end (default n j (t ) < 1).

• j -th trajectory whose population size n j (t ) > E sc is declared escaped (at time t ), but
computed to the end.

• Population size is computed as the sum of the values of the vector-variables (or the
relation-variables) of the model.

• For each model: probability of extinction along time, mean time to extinction (com-
puted over extinct trajectories), probability of escape, mean escape time (computed
over escaped trajectories), growth rates, non extinct population size values, mean
population structure.
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• Stochastic growth rate = exp(a) where a is the average of the logarithmic growth rates
of M trajectories, computed as

a = 1

M

M∑
j=1

[
l n(n j (T ))− ln(n j (0))

T

]
.

Relevant estimator for pure environmental stochasticity.

• Mean growth rate = average of the growth rates of M trajectories, computed as

1

M

M∑
j=1

exp

[
ln(n j (T ))− ln(n j (0))

T

]
.

• Growth rate of the mean pop = growth rate of the average trajectory, computed as

exp

[
ln(n̄ j (T ))− ln(n̄ j (0))

T

]
with n̄(t ) = 1

M

M∑
j=1

n j (t ),

n̄(t ) the average trajectory.

• Mean growth rate2 = average of growth rates of non extinct trajectories, computed as

1

M∗
M∗∑
j=1

n∗
j (1)+·· ·+n∗

j (T )

n∗
j (0)+·· ·+n∗

j (T −1)
,

where n∗
j (t ) is a non extinct trajectory.

• Growth rate2 of the mean pop = growth rate of average non extinct trajectory, com-
puted as

n̄∗
j (1)+·· ·+ n̄∗

j (T )

n̄∗
j (0)+·· ·+ n̄∗

j (T −1)
with n̄∗(t ) = 1

M∗
M∗∑
j=1

n∗
j (t ),

n̄∗(t) the average non extinct trajectory. Relevant estimator for pure demographic
stochasticity.

Example 1 file pass_2s.ulm
? graph t n
? text t n
? montecarlo 50 1000 run Monte Carlo simulation

50 time steps, 1000 trajectories
( . . . )

growth rate2 of the mean pop = 1.0254
growth rate estimator for demographic stochasticity
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t pe(t) pop(t) SE pop*(t) SE
10 0.0020 47.1 0.8 47.2 0.8
20 0.1410 42.1 1.3 49.0 1.4
30 0.3690 42.5 2.0 67.4 2.7
40 0.5040 48.8 3.0 98.4 5.2
50 0.6160 63.9 4.8 166.3 10.7

pe = probability of extinction, pop = mean pop size, SE = standard error, pop* = mean pop
size over non extinct trajectories

? view cc coefficient of reduction in the number of matings
cc = 0.95

? change cc 1 no reduction in number of matings
? montecarlo 50 1000 run Monte Carlo simulation

50 time steps, 1000 trajectories
( . . . )

growth rate2 of the mean pop = 1.0812
probability of extinction at time 50 = 0.084

(much lower than 0.616)

Example 2 file pass_2s.ulm
Initial population size is 48 individuals

? graph t n
? text t n
? montecarlo 50 1000 30 run Monte Carlo simulation

50 time steps, 1000 trajectories
extinction threshold = 30

( . . . )

probability of extinction = 0.760
Probability to get less than 30 individual by time 50

mean population size at time 50 [SE] = 64 [5]
mean population size at time 50 over non extinct trajectories [SE] = 247 [15]

? change nm1 24 change initial population size to 96 individuals
? change nm2 24
? change nf1 24
? change nf2 24
? montecarlo 50 1000 30

probability of extinction = 0.121
mean population size at time 50 [SE] = 564 [16]
mean population size at time 50 over non extinct trajectories [SE] = 640 [17]

Probability to get less than 30 individual by time 50

Example 3 file pass_2s.ulm
Initial population size is 48 individuals
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? graph t n
? montecarlo 50 1000 1 100 run Monte Carlo simulation

50 time steps, 1000 trajectories
extinction threshold = 1
escape threshold = 100

( . . . )

probability of escape = 0.212
mean escape time = 21
probability of extinction = 0.616
mean extinction time = 29

Respectively, probability to get more than 100 individuals by time 50, and probability to get
less than 1 individual by time 50.

Example 4 file met_esd.ulm

• Click button in graphic window. Change n1 to n, remove n2, n3, n4. Select options
Mi nM ax and 2 si g ma. Click OK.

• Click button to run Monte Carlo simulation (montecarlo 50 100 by default). Mean
trajectories appear with 2σ confidence intervals, maximum and minimum values.

• Select option Montecarlo | Settings. Change Number of trajectories to 1000. Click OK.

Click button to run Monte Carlo simulation (now montecarlo 100 1000).
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Newvar

abbreviation: n
other name: new
syntax: newvar var expr
parameters: var name of a variable

expr mathematical expression
function: Creation of a new variable with name var and expression expr .

System is initialized (init).

Example 1 file pass_0.ulm
? newvar p1 n1/n create variable p1 = proportion in age class 1
? newvar p2 n2/n create variable p2 = proportion in age class 2
? graph t p1 p2
? run 20 compare with stable age distribution (command property)

Example 2 file pass_0.ulm
? newvar g lambdaf(1,1) create variable g

whose value is the dominant eigenvalue
? xscale 0 1 set bounds in X
? yscale 0 1 set bounds in Y
? addgraph superimpose graphics
? graph sigma g plot g as a function of si g ma
? parameter sigma 0 1 0.1 make primary sex ratio si g ma vary
? skip 1 skip one time step
? run 1 display growth rate as a function of si g ma

Example 3 file pass_2s.ulm
? newvar pe n < 1 create variable pe = if n < 1 then 1 else 0
? graph t pe set graphics
? yscale 0 1 fix bounds in Y
? montecarlo 100 1000 display pe = probability of extinction along time

(as average trajectory)
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Parameter

abbreviation: a
other name: param
syntax: param var mi n max step
parameters: var name of a variable, used as a parameter

mi n real number, lower bound of variation
max real number, upper bound of variation
step real number > 0, incremental step

function: Variable var will be varied between mi n and max by step step,
when the run command is executed.
The system will be run for each value of the parameter variable var .

Note After the run command, parameter is off. System is initialized (init).

Example 1 file pass_0.ulm
? xscale 0 100 fix bounds in X
? yscale 0 1000 fix bounds in Y
? addgraph superimpose graphs
? graph t n plot n along time t
? parameter s0 0 0.5 0.1 declare s0 as parameter

Parameter ON min = 0, max = 0.5, step = 0.1
? run 50 display n(t ) for values of the parameter s0

Example 2 file regis.ulm, bifurcation diagram
? xscale 100 110 fix bounds in X
? yscale 0 200 fix bounds in Y
? addgraph superimpose graphics
? line no lines between points on graphics
? skip 1900 do not display transients (1900 time steps)
? param r 100 110 0.02 r is the bifurcation parameter,

min = 100, max = 110, step = 0.02
? graph r n display n as a function of r
? run 2000 run the system for 2000 time steps,

for each value of the parameter r
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Property

abbreviation: p
other name: prop
syntax: property < mat >
parameters: mat name of a matrix (default first matrix)
function: Give properties of the matrix mat

Matrix Properties

• irreducibility, primitivity, type: Leslie, extended Leslie, size-classified, multisite, time
dependent, vector dependent (density dependence or frequency dependence), ran-
dom.

• eigenvalues λi , damping ratio ρ, period P .

• left and right eigenvectors associated with the dominant eigenvalue λ: reproductive
value V and population structure W ).

• other demographic quantities: net reproductive rate R0, generation times T , Tc , T̄ ,
entropy S, entropy rate H .

Note The command does not work for a relation-type model. If the matrix is not constant,
properties of the matrix at current time t are displayed.

• Use the Property button to access to the matrix properties.

• The Matrix | Age option is intended for size-classified matrices, and provides the
time spent in stages (see [Barot et al., 2002]). This option is also meaningful for age-
classified matrices.

• The Matrix | Multisite option is intended for block matrices, used in the modeling of
metapopulations with migrations between patches (see [Lebreton, 1996]).

• Other Matrix options (Sensitivities, Stochastic sensitivities, Landscape) are detailed in
the command sensitivity.

Example file pass_0.ulm
? property ask for matrix properties

dominant eigenvalue λ= 1.1050
? change s0 beta1f(0.2,0.15) make matrix stochastic
? property gives properties of matrix at time t = 0

( . . . )
? run 100
? property gives properties of matrix at time t = 100
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Run

abbreviation: r
syntax: run T <∆>
parameters: T integer > 0, number of time steps (default T = 100)

∆ integer > 0, number of steps for text display (default ∆= 10)
function: Run the models for T time steps with output every ∆ time steps.

• The run command is parameterized using the Run | Settings option.

• Graphics are parameterized using the graphic windows Settings option .

• Results are parameterized using the text windows Settings option .

• Press Ctrl-Alt simultaneously to break simulation (with the main window selected).

Notes

• Trajectories are displayed in graphic windows, numerical values are displayed in text
windows.

• Growth rate estimator of the models from time t = T0:

λ̂= exp

[
ln(n(T +T0))− ln(n(T0))

T

]
,

with n the number of individuals along time (sum of relation-variables values for a
relation-type model, sum of vector entries for a matrix-type model).

Example 1 file pass_0.ulm
? property dominant eigenvalue λ= 1.104975
? run 20 run 20 time steps

Model passerine -> pop = 150.2
growth rate from [t = 0] -> 1.106061

? run run 20 more time steps
Model passerine -> pop = 1105.8

growth rate from [t = 0] -> 1.105518
growth rate from [t = 20] -> 1.104975

compare growth rate estimator and λ

Example 2 file regis.ulm
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? graph n1 n2 set graphics for phase portrait
? skip 10 do not display 10 first time steps
? border hide axis
? parameter r 1 60 0.5 vary r from 1 to 60 with increment 0.5
? run 1000 display sort of movie

savegraph

abbreviation: !
syntax: save < xxx.bmp >
parameters: xxx.bmp name of bitmap file
function: Store graphic window in bitmap file xxx.bmp.

The index of the graphic window to be stored
can be specified using the window command.
The bmp file can be later modified, converted to jpg or printed.

• The savegraph command is useful in command files.

• Use alternatively the File | Save option in each graphic window.

Note In case of superimposed graphics (addgraph command), graphics are saved using a
fixed window size.
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Scatter graph

abbreviation: j
syntax: scatter x y1. . . y N
parameters: x y1. . . y N names of variables
function: Display scatter plot of variables y1, . . . , y N as a function of

variable x in graphic window, together with regression line.

• Use alternatively options Scatter and Regress in graphic windows Settings .

• The scatter command operates on window #1 unless window #i has been selected
using the window command.

Example file met_esd.ulm
? change ii 1 set immigration indicator
? newvar er extratef(n) create new variable er equal to extinction rate of n
? newvar cvz cvzf(n) create new variable cv z equal to

coefficient of variation of n with zeros excluded
? scatter cvz er parameterize scatter plot: relation variation/extinction
? window 2 create and select graphic window #2
? graph t n parameterize graphic window #2
? run 10000 1000 run model

display scatter plot of variation/extinction
along time in graphic window #1

display population trajectory in graphic window #2
? montecarlo 1000 10000 run Monte Carlo simulation (1000 trajectories)

display scatter plot of variation/extinction at time 1000
in graphic window #1
display average population trajectory in graphic window #2
In status bar of graphic window #1 appears:
a = 0.1315 b = -0.07304
In main window appears:
Regression: slope = 0.1315 intercept = -0.07304
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Sensitivity

abbreviation: s
other name: sens
remarks: Computations are not always feasible.

Does not work for relation-type models.

Usage 1:

syntax: sens < mat >
parameters: mat name of a matrix (default first matrix)
function: Give sensitivities and elasticities of the dominant eigenvalue λ

of matrix mat to changes in matrix entries.
When the matrix is not constant, sensitivities of the actual matrix
(at current time t ) are given.
If the matrix is random or density dependent,
stochastic sensitivities are computed over 100 time steps.

• Select option Matrix | Sensitivities to access to the Sensitivities window.

• Select option Matrix | Stochastic sensitivities to access to the Stochastic sensitivities
window, where the number of time steps can be parameterized.

Example 1 file pass_0.ulm
? sensitivity sensitivities and elasticities of λ

to changes in matrix entries
? change s0 beta1f(0.2,0.15) make matrix stochastic
? sensitivity give stochastic sensitivities

Usage 2:

syntax: sens < mat > var
parameters: mat name of a matrix (default first matrix)

var name of a variable
function: Give sensitivities and elasticities of the dominant eigenvalue

of matrix mat to changes in variable var .
This is done via formal derivation.

Example 2 file pass_0.ulm
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? sensitivity s sensitivities and elasticities of λ to changes in s
? sensitivity v sensitivities and elasticities of λ to changes in v
? sensitivity f1 sensitivities and elasticities of λ to changes in f 1
? sensitivity s0 s0 is the most sensitive parameter
? change s0 beta1f(0.2,0.15) make matrix stochastic
? sensitivity s0 give sensitivity of actual λ to changes in s0

+ stochastic sensitivity to changes in s0

Usage 3:

syntax: sens < mat > var x var y
parameters: mat name of a matrix (default first matrix)

var x var y names of 2 variables
function: Display fitness landscape associated with variables var x and var y .

The matrix must be constant.

• Select option Matrix | Landscape to get the Landscape window, where the graphic
bounds can be parameterized.

Example 3 file pass_0.ulm

• Select the Matrix | Landscape option. Provide s as Variable X, v as Variable Y. Click
Exec. The λ-isoclines are drawn using the bounds [0.5s,1.5s] in X, and the bounds
[0.5v,1.5v] in Y (the default). The isocline of the actual λ is drawn in red.

• Provide s0 as Variable X, f 1 as Variable Y. Set the bounds in X to [0,1]. Set the bounds
in Y to [0,15]. Click Exec.

Skip graph

abbreviation: >
syntax: skip T
parameters: T integer > 0, number of time steps
function: When the run command is executed, the first T time steps

(t = 0, . . . ,T −1) are not displayed in the graphic window (but computed).
Useful for bifurcation diagrams (see command run).

• Click the Settings button in the graphic window. The Skip field is in the General
panel.

• Graphic window #i can be selected using the window command.
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Spectrum graph

abbreviation: k
other name: spec
syntax: spec var
parameters: var name of variable
function: Display the power spectrum of variable var in graphic window #1:

decimal logarithms of square modulus of normalized frequencies [0,0.5].
The system is run for 1024 time steps.

• Select the Tools | Spectrum option to get the Spectrum window, in which the number
of time steps (a power of 2) can be parameterized.

Example file regis.ulm
? change r 60 display power spectrum with incommensurable discrete

frequencies (quasi-periodicity)
? spec n
? change r 110
? spec n display continuous power spectrum (chaos)
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Text on/off

abbreviation: t
syntax: text var 1. . . var N
parameters: var 1. . . var N name of variables
function: If on, display values of variables var 1, . . . , var N in the main window,

as the run or montecarlo command is executed.
default: on

• Button allows to open up to 6 text windows, numbered #1 to #6, which can be

parameterized using the Settings option .

• Button clears the Text window.

• For the Monte Carlo simulation, no more than 10000 rows can be displayed. The
Sampling interval should be adjusted in accordance with the number of time steps.

• The text windows can be saved using the File | Save option .

• Command text is totally independent of the text windows, though the purpose is
similar.

Example 1 file regis.ulm

• Click to open text window #1, then to run the model 100 time steps. Values of
time t and variables n1, n2 are displayed in the text window (every 10 time steps).

• Click the Settings option , change n1 to n, remove n2. Change Sampling interval to
20. Click OK.

• Click to run the model 100 more time steps. Values of time t and variable n are
displayed every 20 time steps.

Example 1 file pass_2s.ulm

• Select option Montecarlo | Settings. Change Number of trajectories to 1000 (Number of
time steps is 50 by default). Click OK.

• Click to open text window #1. Click the Settings option , change nm1 to n,
remove nm2, n f 1, n f 2. Click OK.

• Click to run the Monte Carlo simulation. Values of time t , mean population size
(n) with standard error (SE), mean population size over non extinct trajectories (n∗)
with standard error (SE) are displayed in the text window.
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View

abbreviation: v
syntax: view o1. . .oN
parameters: o1. . .oN name of ULM objects (matrix, vector, relation, variable, function)
function: Display initial and actual values of objects o1, . . . ,oN .
syntax: view
function: Display all ULM objects.

• Button provides the Variables window with initial values, actual values and ex-
pressions of all variables. Expressions can be modified by selecting the corresponding
field, modifying the expression, and typing <return>.

• The variables can be listed in Evaluation order or Alphabetical order (see bottom of
the window).

• Option Variables | All lists all ULM objects as a hierarchical tree.

• Option Variables | Calculator is a desk calculator allowing the computation of mathe-
matical expressions possibly involving ULM variables.

Example file regis.ulm

• Click . Click button . Change the expression of r to 30. Type <return>. Select
option Variables | All to get the Objects window. The initial value of the matrix is shown
in the right panel.

• Click to run the model 50 time steps. The trajectories stabilize. Select the Objects
window. The panel is updated with the actual value of the matrix.

• Click to run the model 50 more time steps. Select the Objects window. It is checked
that the matrix is almost constant.

• Click the Property button to check that λ is 1.
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Window on/off graph

abbreviation: w
syntax: window i
parameter: i integer in {1, . . . ,6}, refer to graphic window #i
function: Select or create graphic window #i,

to which will apply all subsequent graphic commands:
addgraph
border
distribution
erase
line
graph
scatter
savegraph
xscale
yscale

default: i = 1

• Useful to store several graphic windows using command files.

Example file regis.ulm
? graph t n parameterize graphics for window #1 (default)
? window 2 create and select graphic window #2

Graphic window #2 selected
? graph n1 n2 parameterize graphics for window #2
? run 500 run model

display population trajectory in graphic window #1
display attractor in graphic window #2
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Xscale on/off graph

abbreviation: x
syntax: xscale < xmi n > < xmax >
parameter: xmi n xmax real numbers, bounds of graphics on the X axis
function: Fix bounds xmi n and xmax for abscissas (default: actual values).
default: off (automatic scaling on the X axis)
see also: yscale, addgraph

• Use alternatively option Fix Xscale in graphic windows Settings .

• Graphic window #i can be selected using the window command.

Yscale on/off graph

abbreviation: y
syntax: yscale <ymin> <ymax>
parameter: ymi n ymax real numbers, bounds of graphics on the Y axis
function: Fix bounds ymi n and ymax for abscissas (default: actual values).
default: off (automatic scaling on the Y axis)
see also: xscale, addgraph

• Use alternatively option Fix Xscale in graphic windows Settings .

• Graphic window #i can be selected using the window command.
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6 MATHEMATICAL FUNCTIONS

6.1 Binary operators

The following binary operators are available:

• Usual arithmetical operators: + ∗ / −ˆ(power)

• \ real modulo: a \ b = a −b ∗ trunc(a/b). Examples: 7.4 \ 2 = 1.4, 7 \ 2 = 1

• @ convolution operator: F @ n = sum of n samples of distribution F . Examples: ber(p)
@ n = binomf(n,p), poisson( f ) @ n = poissonf(n, f ).

• <: a < b is 1 if a is strictly less than b, 0 otherwise

• >: a > b is 1 if a is strictly greater than b, 0 otherwise

6.2 Unary operators

- minus
sqrt square root
abs absolute value
trunc integer part

trunc(3.5) = 3, trunc(3.8) = 3, trunc(-3.5) = -4, trunc(-3.8) = -4
round nearest integer

round(3.2) = 3, round(3.6) = 4, round(-3.2) = -3, round(-3.6) = -4
ln neperian logarithm
ln0 neperian logarithm extended to 0 by ln0(0) = 0
log decimal logarithm
exp exponential
fact factorial
cos cosinus
sin sinus
tan tangent
acos inverse cosinus
asin inverse sinus
atan inverse tangent
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6.3 Other operators

min min(a1, . . . , an): minimum of the ai ’ s
max max(a1, . . . , an): maximum of the ai ’ s
stepf stepf(x, a,b) = 1 if a 6 value of x 6 b, 0 otherwise
if conditional: if(A,B ,C ) ≡ if A 6= 0 then B else C

if(2 < 3,1,2) = 1, if(trunc(2.5)-2,1,2) = 2
bicof bicof(n, p): binomial coefficient

(n
p

)
lambdaf lambdaf(i , j ): modulus of j -th eigenvalue of i -th model

lambdaf(1,1) = dominant eigenvalue of first model
prefv prevf(x,k): previous value of variable x, k time steps backward

prevf(x,1) = value of x at the previous time step
bdf bdf(n,b,d ,∆): discrete version of continuous birth-death process,

similar to the poissonf function (see integer distributions below)
n = number of individuals,
b = birth rate,
d = death rate,
∆ = step of integration (choose ∆≈ 1/(b +d))
n′ = bdf(n,b,d ,∆) is similar to n′ = poissonf(n,exp(b −d))
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6.4 Analysis of time series

We denote H the extinction threshold (default H = 1, see montecarlo command).
gratef gratef(x): growth rate of variable x at time T : exp

[
ln(x(T ))−ln(x(0))

T

]
textf textf(x): extinction time of variable x,

first time T such that x < H

meanf meanf(x): average value x̄ of variable x along time

variancef variancef(x): variance VAR(x) of variable x along time

skewnessf skewnessf(x): skewness γ1(x) of variable x along time

cvf cvf(x): coefficient of variation of variable x = CV(x) =
p

V AR(x)
x̄

meanzf meanzf(x): average value of variable x with zeros excluded,
values of x such that x < H

variancezf variancezf(x): variance of variable x with zeros excluded,
values of x such that x < H are excluded

cvzf cvzf(x): coefficient of variation of variable x with zeros excluded,
values of x such that x < H are excluded

nzf nzf(x): number of zero values of variable x,
number of dates τ such that x(τ) < H

nef nef(x): number of extinctions of variable x,
number of dates τ6 t such that x(τ−1)> H and x(τ) < H

nif nif(x): number of immigrations of variable x,
number of dates τ6 t such that x(τ−1) < H and x(τ)> H

extratef extratef(x): extinction rate of variable x,
estimated at time t as ER(x) = e

t+1−z if x(t ) < H ,
and ER(x) = e

t−z otherwise, with z = nzf(x) and e = nef(x),
the number of dates τ6 t such that x(τ−1)> H and x(τ) < H

immratef immratef(x): immigration rate of variable x,
estimated at time t as IR(x) = i

z−i if x(t ) < H ,
and IR(x) = i

z otherwise, with z = nzf(x) and i = nif(x),
the number of dates τ6 t such that x(τ−1) < H and x(τ)> H
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6.5 Random functions: continuous distributions
rand rand(a) uniform distribution over [0, a]

domain a > 0
range [0, a]
mean a/2
variance a2/12
density 1

a× characteristic function of [0, a]
gaussf gauss(m, s) Gaussian distribution

mean m, standard deviation s
domain s > 0
range R

density 1
s
p

2π
exp

[
−1

2
(x−m)2

s

]
gauss gauss(s) Gaussian distribution

mean 0, standard deviation s
gauss(s) = gaussf(0, s)

gamm gamm(a) gamma distribution with parameter a
domain a > 0
range R∗+
mean a
variance a
density 1

Γ(a) xa−1e−x

betaf betaf(a,b) beta distribution with parameters a, b
domain a > 0, b > 0
range [0,1]
mean a

a+b
variance ab

(a+b+1)(a+b)2

density Γ(a+b)
Γ(a)Γ(b) xea−1e−x
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beta1f beta1f(m, s) variant of beta distribution
mean m, standard deviation s

domain m > 0, 0 < s2 < m(1−m)
range [0,1]
mean m
variance s2

remark the distribution is bell-shaped for small s
and U-shaped for large s

expo expo(a) exponential distribution with parameter a
domain a > 0
range R∗+
mean 1

a
variance 1

a2

density a exp(−ax)
lognormf lognormf(m, s) lognormal distribution

mean m, standard deviation s
domain m > 0, s > 0
range R∗+
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6.6 Random functions: integer distributions

ber ber(p) Bernoulli samples
P(X = 0) = 1−p, P(X = 1) = p

domain 06 p 6 1
range {0,1}
mean p
variance p(1−p)
generating function f (s) = (1−p)+ps

binomf binomf(n, p) Binomial distribution
P(X = k) = (n

k

)
pk (1−p)n−k

domain n > 0, 06 p 6 1
range {0,1, . . . ,n}
mean np
variance np(1−p)
generating function f (s) = ((1−p)+ps)n

nbinomf nbinomf(r, p) negative binomial distribution

P(X = k) = (k+r−1
r−1

)
pr (1−p)k

domain r real, 06 p 6 1
range N

mean r (1−p)/p
variance r (1−p)/p2

nbinom1f nbinom1f(m, s) negative binomial distribution
mean m, standard deviation s

domain 0 < m < s2

range N

mean m
variance s2
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poisson poisson(m) Poisson distribution with mean m

P(X = k) = e−m mk

k !
domain m > 0
range N

mean m
variance m
generating function f (s) = exp(m(s −1))

poissonf poissonf(n,m) = sum of n samples of poisson(m)
geom geom(p) geometric distribution with parameter p

P(X = k) = p(1−p)k

domain 06 p 6 1
range N

mean 1−p
p

variance 1−p
p2

generating function f (s) = p
1−(1−p)s

tabf tabf(p0, . . . , pn) tabulated distribution
P(X = k) = if k 6 n then pk else 0

domain 06 pk 6 1, p0 +·· ·+pn = 1
range {0,1, . . . ,n}
mean m = f ′(1) = p1 +2p2 +·· ·+npn

variance f ′′(1)+m −m2

generating function f (s) = p0 +p1s +·· ·+pn sn
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7 TECHNICAL NOTICE

7.1 Specifications

Computer PC, MAC
System Windows®, Linux, macOS®

Minimal memory required 1 Go
Programming language Object Pascal – Borland Delphi 6

Compiled under Free Pascal/Lazarus
Source code size ∼ 17000 lines
Distribution package size ∼ 5 M

7.2 Program bounds

General
maximum number of models in the same model file 5
maximum size of models (size of matrix or number of relations) 100
maximum number of relations (total) 500
maximum number of variables 5000
Graphics
maximum number of graphics windows 6
maximum number of trajectories per window 4
best graphic resolution in number of time steps 10000
Text
maximum number of text windows 6
maximum number of variables per window 16 (4 for Monte Carlo)
maximum number of lines per window 10000 for Monte Carlo
File
maximum number of output text files 5
maximum number of variables per file 10
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8 ULM DISTRIBUTIONS

8.1 Downloads

ULM web page https://www.biologie.ens.fr/~legendre/ulm/ulm.html

Computer/System Download Install

PC Windows® Compressed archive Program file
64-bit ulm.zip ulm.exe

PC Linux Compressed archive Program file
64-bit ulm.tar.gz ulm

Expand using command
tar -xzf ulm.tar.gz

macOS® Compressed package Program file
64-bit ulm.dmg ulm

All distributions also contain a console (no graphics) version: ulmc.

8.2 Source files

The ULM source files and compiling facilities for Windows®, Linux and macOS® are provided
under the GitLab environment:

GitLab site https://gitlab.com/ecoevomath/ulm
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