Accèder directement au contenu

Early Mars habitability and global cooling by H2-based methanogens

Boris Sauterey, Benjamin Charnay, Antonin Affholder, Stephane Mazevet, Régis Ferrière

Abstract

During the Noachian, Mars’ crust may have provided a favourable environment for microbial life. The porous brine-saturated regolith would have created a physical space sheltered from ultraviolet and cosmic radiation and provided a solvent, whereas the below-ground temperature and diffusion of a dense, reduced atmosphere may have supported simple microbial organisms that consumed H2 and CO2 as energy and carbon sources and produced methane as a waste. On Earth, hydrogenotrophic methanogenesis was among the earliest metabolisms, but its viability on early Mars has never been quantitatively evaluated. Here we present a probabilistic assessment of Mars’ Noachian habitability to H2-based methanogens and quantify their biological feedback on Mars’ atmosphere and climate. We find that subsurface habitability was very likely, and limited mainly by the extent of surface ice coverage. Biomass productivity could have been as high as in the early Earth’s ocean. However, the predicted atmospheric composition shift caused by methanogenesis would have triggered a global cooling event, ending potential early warm conditions, compromising surface habitability and forcing the biosphere deep into the Martian crust. Spatial projections of our predictions point to lowland sites at low-to-medium latitudes as good candidates to uncover traces of this early life at or near the surface.

More information


Nature Astronomy volume 6, pages 1263–1271 (2022)