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ABSTRACT 

 

It’s a long time since it has been observed that insular populations are less subject to sexual 

selection than continental ones. Nevertheless, the reasons of this difference between islands 

and continents are not clearly understood. In order to test the hypotheses that the difference in 

population size (smaller populations on islands) leads to a different evolution of sexual traits, 

we have developed a model of sexual selection using the theory of adaptive dynamics. Our 

model allows  to study the coevolution of secondary sexual character and  individual 

preferences, with population size as a key parameter. Contrasting with most models of sexual 

selection which are based on quantitative genetics, our model is based on demography. It can 

predict the possibility of the Fisher’s runaway process, without assuming genetic correlation 

between male and female traits. The model uses a mating function incorporating male and 

female preferences, and can be applied to small populations. According to our results, sexual 

selection is less intense in small populations, entailing reduced secondary sexual characters 

and dimorphism. Furthermore, the loss of sexually selected traits and the inversion of 

dimorphism (exaggerated ornaments in females instead of males) appear as possible 

outcomes, which is consistent with recent phylogenetic studies. 

 

 

Keywords: sexual selection, sexual dimorphism, adaptive dynamics, insular populations, 

Fisher’s runaway process. 



1. INTRODUCTION 

 

Insular populations seem to be less ‘sexy’ than continental ones (Bateson 1913; Mayr 1942; 

Peterson 1997; Grant 2001). Many hypotheses have been advanced to explain this 

phenomenon. Sexually selected populations could be more vulnerable due to the cost of 

exaggerated secondary sexual characters and thus more subject to extinction when small (Mc 

Lain et al. 1995; Sorci  et al. 1998). In small populations, the number of mates, and 

consequently the growth rate, could decrease when individuals are selective; this phenomenon 

is known for the consequences it has in conservation biology, because it generates an Allee 

effect (Legendre et al. 1999; Courchamp et al. 1999; Stephens & Sutherland 1999; Møller & 

Legendre 2001). The decreased variability due to the funding effect on island could also 

explain why females do not benefit anymore from being selective (Møller 2001). The role of 

sexual traits in species recognition (to avoid hybridization) is also less important on islands, in 

absence of linked species (Grant 2001). Here, we want to test the hypotheses that the size of a 

population, via the probability for an individual to be mated, influences its benefit from being 

attractive as well as its benefit from being selective, and in fine, influences sexual selection. 

Darwin (1871) first recognized the existence of exaggerated ornaments among males of 

many species, seemingly contradicting the optimization expected from natural selection. 

Fisher (1930) gave a verbal argument, now known as the ‘Fisher’s runaway process’: the male 

ornament and female preference would get genetically correlated, and engage in a form of 

arms race until counter selected by natural selection. Mathematical models have played an 

important role in understanding the mechanisms of sexual selection. The first one (O'Donald 

1962) was developed to test the plausibility of the Fisher’s Runaway. Since then, several 

models (Lande 1981; Kirkpatrick 1982; Kirkpatrick et al. 1990; Pomiankowski et al. 1991; 

Iwasawa and Pomiankowski 1999; Hall et al. 2000; Gavrilets et al. 2000) have clarified the 

hypotheses of the mechanisms involved. Wiens (2001) has summarized the kinds of models 

developed so far in order to test whether they are consistent with recent phylogenetic studies 

showing that losses of elaborate male traits are widespread and can even be more common 

than are gains.   

Most models proposed to study sexual selection are based on Lande’s (1981). They use 

the theory of quantitative genetics, and tend to show that the development of male character 

and female preference is mainly due to a genetic correlation establishing between those traits. 

According to these models, a (natural) selection pressure on female preference strongly 

reduces the possibility of a runaway. However, there is evidence for such pressures in natural 



populations that present nevertheless sexual characters (Andersson 1994). These models fail 

to explain sexual selection in monogamous species with unbiased sex-ratio, while 

monogamous bird species can be strongly sexually selected (Price 1984; Møller 1988; Møller 

1992; Møller and Birkhead 1994). They do not take into account the effect of the size of the 

population on sexual selection while this parameter seems to exert a strong influence. At end, 

they fail to explain the widespread loss of sexual characters during evolution (Omland & 

Lanyon 2000; Wiens 2001).   

By contrast, we present a model of sexual selection based on demography. Our model 

stands for monogamous species with unbiased sex-ratio. It incorporates life cycle 

characteristics of the species (survival, fecundity), and a mating function accounting for male 

and female preferences. The coevolution of male and female characters is assessed using the 

framework of adaptive dynamics (Metz et al. 1996; Dieckmann & Law 1996; Geritz et al. 

1998). This allows to study the interplay of population size and  sexual selection. Although 

our model is theoretical and not based on a particular species, it has been built with birds 

populations as reference since most data concerning sexual selection in insular populations 

deal with birds. Population size being a key parameter of the model, we can study the 

outcome of sexual selection for small populations, like those colonizing islands. Our model 

can explain the Fisher’s runaway even when female preference is faced to a strong pressure, 

and can also explain the loss of sexual traits. To our knowledge it is the first model based on 

demography showing the possibility of the Fisher’s runaway, as well as its reversibility. 

Genetics are not explicitly involved. However, the use of the theory of adaptive dynamics 

provides the heritability mechanism necessary for the emergence of sexual selection. It is also 

the first model described in mathematical terms showing the possible reversibility of sexual 

selection. 

 

2. METHODS 

 

(a) Effect of population size on the probability for an individual to be mated 

Even in a monogamous population with unbiased sex-ratio, some individuals may not 

mate. This is a consequence of demographic individual choice, and the effect is more 

pronounced when the population is small (Møller & Legendre 2001). Thus, depending on 

population size, individuals should not have the same benefit from being attractive, nor the 

same benefit from being choosy. To quantify this benefit, we have first calculated the 

probability for an individual living in a population of size n  to be mated, and then the 



probability for a mutant more or less attractive or selective in this population to be mated. We 

have used the formalism of Møller & Legendre (2001), which has the advantage of involving 

only few parameters. Let’s consider a monogamous population of size n  comprising fn  

females and mn  males (mature individuals). The adult sex-ratio r  equals nnf . A female 

accepts a male with probability fp  and a male accepts a female with probability mp . The 

probability p for a given male and a given female in the population to accept one another 

(probability to be compatible), is mf ppp = . This probability reflects the intensity of sexual 

selection: the smallest the p , the more selective the individuals. 

Let mP   be the probability for a male to be mated and fP  the probability for a female to be 

mated. Assuming monogamous mating, the number N  of mates is mmff nPnPN == . We 

assume that if two individuals are compatible and if they are not already paired, then they 

mate. Thus, unpaired individuals of one sex are those who are not compatible with unpaired 

individuals of the other sex. There are Nnf −  unpaired females; the probability mP−1  for a 

male not to be mated is nPn ffp −− )1( . We obtain  

    ))1(()1(1 rPrn
m

mpP −−−−= .     (2.1) 

Using equation (2.1), and a fixed-point algorithm, we can compute the probability mP  for a 

male to be mated in a population of size n , sex-ratio r  and proportion of compatibilities p.  

 

(b) Mating function 

Two-sex demographic models make use of a mating function giving the probability a for 

an individual in the population to be mated (Caswell 1986, 2001; Legendre et al. 1999). The 

mating functions are homogeneous with size: ),(),( mfmf nnkaknkna = . For a monogamous 

mating system, )1,min(),min(),( rrnnnna mfmf −== . As a consequence of homogeneity, these 

mating functions do not take into account the deficit of mates linked to small population size. 

To take population size into account, one can reduce the number of mates using a percentage 

(Legendre et al. 1999), but this is arbitrary. This problem does not occur with our mating 

function )1(),( rPnnPnNnna mmmmf −===  which depends on the size of the population and 

on the intensity of sexual selection. Our mating function matches the classical )1,min( rr −  

when there is no sexual selection ( 1=p ), or when the population is large. 

 



(c)  Adaptive dynamics 

The traits under study are the secondary sexual character of the male z , and the 

preference y  of  the female. The preference of the female is the value y  of the male trait that 

female prefer. The character z  of the male can be tail size, color intensity, song diversity, or 

any character influencing female choice. As in Lande (1981)  (‘absolute choice’), a female 

with preference y  accepts a male with trait z  with probability  








 −−= 2
)(exp)(
2zyyzpf .      (2.2) 

Using the framework of adaptive dynamics, we shall study how a rare male mutant with 

trait 'z  performs in a resident male population with trait z , and how a rare female mutant 

with preference 'y  performs in a resident female population with preference y . 

 

(d) Individual fitness 

The fitness of individuals is based on a simple life cycle with two age classes (juveniles 

and adults) and is given by: 

rPgvs += ,      (2.3) 

where v  is adult survival rate, 5.0=r  is adult sex-ratio, P  is the probability for a mature 

individual to be mated, and g  is the number of  young surviving up to maturity per mate 

( fsg 0= , with f  fecundity, and 0s  juvenile survival rate). 

Let’s consider a mutant male in the population: this male is accepted with probability 'fp  

( ff pp <'  if the male is less attractive, ff pp >'  if the male is more attractive). The probability 

'mP  for the mutant to be mated is given by:  

    )1()'1(1' fPnr
fmm ppP −−−= .     (2.4) 

Figure 1 shows the expected result that less attractive males are less likely to be mated, while 

more attractive ones are more likely to be mated. 

 

(e) Male’s cost of being attractive 

We normalize the value of the male trait z under natural selection only (without the effect 

of sexual selection) to 0=z . We assume that when 0=z , the corresponding adult male 

survival rate mv  is optimum and equals 0mv . When sexual selection operates, this has a cost 



on adult survival rate (carotenes are invested in plumage coloration, plumage brightness 

increases predation risk) . We investigate two possible trade-offs: 

(a) survival rate mv  decreases linearly with trait z , with constant cost mc1 : 

 zcvzv mmm 10)( −= ,      (2.5a) 

(b) survival rate mv  decreases quadratically with trait z : 

 2
20)( zcvzv mmm −= .      (2.5b) 

In the same way that being attractive is costly for males, being choosy is costly for 

females (energy spent to find a compatible male, increased predation). Let fv  be the female 

survival rate and 1fv  its optimal value when individuals do not make any choice ( 1=fp ). The 

trade-off between female choice and survival is given by )1()( 1 mfffff ppdvpv −−= , where 

fd  is a constant reflecting the cost of choice. 

 

(f) Female’s benefit of being choosy 

According to the indicator principle (Zahavi 1975), the character of the male reflects its 

quality. A male of good quality increases the fecundity f  of the female he is mated with 

(good female stimulation, good sperm quality, good food supply), and the survival rate 0s  of 

its progeny (heritability of  “good genes”, better parental care) (Wedell 1999). The number g  

of young surviving up to maturity for such a good male is larger. Let 0g   be the mean value of 

g  in a resident population with character z . The value of g  for a mutant male with character 

'z   is given by )'()'( 0 zzhgzg −+=  where h  is a constant reflecting the influence of male 

quality on female fecundity and juvenile survival rate.  

A female preferring males with good quality (high z  value), is more likely to be mated to 

a good male. For this female, the number g  of young surviving up to maturity is larger. The 

value of g  for a mutant female with preference 'y  in a population with preference y  is given 

by: )'()'( 0 yyhgyg −+= . 

 



3. RESULTS 

 

We study the outcome of the coevolution of the male trait z  and female preference y  in a 

population of size n , using the sign of the fitness gradients (Geritz et al. 1998). The process is 

first studied with each one of the traits fixed. 

 

(a) Evolution of the female preference when the male trait is fixed 

According to equation (2.3), the fitness of a mutant female with preference 'y  in a 

resident population with preference y and character z  is given by )'('2
1)'()'( ygPpvys ffffy

+=  

where 'fP  is the probability for a mutant female accepting )'(' yzpp ff =  males to be mated. 

The fitness gradient is given by (see appendix): 

hppPngpp
ppP

pppdpppy
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mf
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−

−−=∂
∂

=

. (3.1) 

The first term of the sum corresponds to the cost of choice on survival. The second term 

corresponds to the cost of choice linked to the risk of not being mated. The third term 

corresponds to the benefit of choice on the number and quality of the young. 

Let the character z of males be fixed. The female preference y  increases if the fitness 

gradient is positive and decreases otherwise. The value of the female fitness gradient as a 

function of female selectivity fp  is presented in figure 2a. The fitness gradient is positive as 

long as fp  is greater than a critical value *
fp , and negative if fp  becomes lower than this 

critical value. This means that as long as females are not too choosy ( fp  is close to 1), the 

best strategy for a female individual is to be more selective than the others in order to be 

mated with a male of better quality. On the evolutionary scale, females become more 

selective. The character of males being fixed, the proportion fp  of accepted males decreases. 

If females become too choosy ( fp  approaches 0), then costs of choice become more 

important than benefits, and the best strategy for an individual female is to be less choosy than 

the others. On the evolutionary scale, females become less selective and the proportion of 

accepted males increases. Hence, there exists a critical value *
fp  corresponding to a maximal 

fitness for females. Shall the evolution of sexual traits be directed by females only (the 

character z  of males being fixed), the preference y  of females would evolve to an 



equilibrium value for which *)( ff pyzp = , or *
1ln2
fp

zy +=  by equation (2.2). Let’s 

define *
* 1ln2

f
f p
=δ ; we obtain the female isocline (figure 3a). When z  is fixed, y evolves 

to *
fz δ+ as shown by arrows. 

 

(b) Evolution of the male trait when the female preference is fixed 

The fitness of a mutant male with character 'z  in a resident population with character z  

and female preference y  is given by )'('2
1)'()'( zgPzvzs mmmz

+= , where 'mP  is the probability 

for a mutant male accepted by )'(' yzpp ff =  females to be mated. The fitness gradient is 

given by: 
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The first term of the sum corresponds to the cost of the character on survival. The second 

corresponds to the benefit of the character on the chance of being mated. The third 

corresponds to the benefit of the character on the number and quality of the young. 

 Let the preference y  of  females be fixed. The male character z  increases if the fitness 

gradient is positive and decreases otherwise. The value of the male fitness gradient as a 

function of female selectivity fp  is presented in figure 2b. The fitness gradient is positive as 

long as fp  is smaller than a critical value **
fp , and negative if fp  becomes larger than this 

critical value. This means that when males are not very attractive ( fp  is close to 0), the best 

strategy for a male individual is to develop his character to be more attractive than the others 

in order to minimize the risk of not being mated. On the evolutionary scale, males develop 

their character. The preference of females being fixed, the proportion of accepted males 

increases. If males become too attractive ( fp  approaches 1), then costs linked to the 

development of the character become more important than benefits, and the best strategy for a 

male is to develop his character less than the others. On the evolutionary scale, the character 

of males decreases, and  the proportion of accepted males decreases. Hence, there exists a 

critical value **
fp  corresponding to a maximal fitness for males. Shall the evolution of sexual 

traits be directed by males only (the preference y  of females being fixed), the character z  of 



males would evolve to an equilibrium value for which **)( ff pyzp = , or **
1ln2
fp

yz −=  . 

Let’s define **
** 1ln2

f
f p

=δ ; we obtain the male isocline (figure 3b). When y  is fixed, z  

evolves to **
fy δ− as shown by arrows. 

 

(c) Coevolution of male character and female preference 

To study the simultaneous evolution of female preference and male character, we 

superpose the male and female isoclines, with arrows indicating the way traits evolve (figure 

4). There are two cases: 

1) If ***
ff pp <  , then ***

ff δ≥δ  (figure 4a) 

Let’s consider the evolution from an initial state without any sexual selection. We have 

0=z , 0=y , and 1=fp . The male gradient is negative: the character does not develop. On 

the contrary, the female gradient is positive: the preference y  increases and thus fp  

decreases from 1 to *
fp . When *

ff pp = , the male gradient is still negative: the male 

character does not develop. The sexual selection pressure is not intense enough for males to 

develop their character. The state ( )*,0 fyz δ==  is an equilibrium state. At equilibrium, the 

male character is not developed, though females are selective with intensity *
fp  . This 

equilibrium state is attractive whatever the initial state. This means that even if the male 

character and the female preference have developed, a way back is possible with decreasing 

female preference and loss of the male character.  

2) If  ***
ff pp ≥ , then ***

ff δ≤δ (figure 4bc) 

As in the preceding case, from an initial state without sexual selection, the preference y  

increases and thus fp  decreases. Before fp  reaches *
fp , the male gradient becomes positive; 

this means that the male character starts developing, which tends to increase fp . 

Simultaneously, the female gradient keeps positive, thus females go on developing their 

preference, which tends to decrease fp . Thus, the more y  increases, the more z  increases 

and vice versa. This case corresponds to the Fisher’s runaway. With a linear trade-off between 

character and survival (equation 2.5a, figure 4b), the process never stops, possibly leading to 



very exaggerated traits. With a quadratic trade-off (equation 2.5b, figure 4c), **
fp  decreases 

when z  increases. The process stops when ***
ff pp = . The male and female characters reach 

an equilibrium value (the value for which isoclines cross). This corresponds to an equilibrium 

between natural and sexual selection.  

 

(d) Influence of population size on sexual selection 

The evolution of sexual selection depends on the sign of  ***
ff pp − : a runaway occurs 

when this quantity is positive. Computing *
fp  and **

fp  for different values of population 

size n , we find that both *
fp  and **

fp  increase when the population gets small, but *
fp  

increases much more than **
fp  does (figure 5a).  

As the risk of not being mated increases ( n  decreases), females benefit from being less 

selective and the pressure of sexual selection on males is no more sufficient to compensate for 

the cost of a secondary sexual character. As a consequence, the condition for a runaway to 

occur ( ***
ff pp ≥ ) is more likely to be fulfilled when populations are large. According to our 

model, the runaway process is reversible: if a population has developed a sexual character and 

if the size of this population decreases, the character may disappear.  

 

(e) Sexual dimorphism 

So far we have focussed on a male trait preferred by females. However, females also have 

traits which can possibly be sexually selected. Sexual dimorphism depends on the evolution 

of both male and female character. The expression of female character fitness gradient is 

similar to the expression calculated for male character (equation 3.2) : 
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Characters are more likely to develop when gradients have high values. Hence, the 

dimorphism between males and females is expected to be all the more important that male 

fitness gradient is greater than female fitness gradient. We can compute the value of both 

fitness gradients for different values of n , fp  and mp . We find that a high dimorphism is 

likely to exist when n  is large, fp  is close to 0 (females are very selective), and mp  is close 

to 1 (males are not very selective). In this case the dimorphism is expected to decrease as the 



size of the population decreases, and it can even invert, with females developing their 

character more than males do (figure 5b).  

 

4. DISCUSSION 

 
We have studied sexual selection in the framework of adaptive dynamics, focusing on the 

coevolution of male character and female preference. Our approach differs from quantitative 

genetics (Lande 1981) in that the development of male character and female preferences is 

explained in terms of costs and benefits, without referring to a genetic correlation that could 

establish between the male and female traits. Moreover, population size is a parameter of our 

model, allowing to study the influence of population size on sexual selection, while 

quantitative genetics models only deal with frequencies and not directly with size. 

 

(a) Sensory bias hypothesis 

We find that the development of female preferences occurs before the development of 

male characters. Male traits are thus driven by the pre-existing choice of females. This choice 

may depend on biases in the female sensory system, e.g.  preferences for traits developed  in 

response to direct benefits – for instance preferences for colours or shapes that correspond to 

characteristics of their preys. Our model is thus relevant with the widespread idea that males 

exploit a pre-existing sensory bias (Andersson 1994; Jennions & Brooks 2001). 

 

(b) The loss of sexual traits 

In our model, a runaway appears when the optimal proportion of compatibilities between 

individuals is lower for females than it is for males. In this case, males develop their character 

to attract females and females develop their preference to “resist” males. This is in accordance 

with the recent idea that sexual selection results from a conflict between sexes (Gavrilets et al. 

2000).  

We find that the runaway process is reversible: a population may develop a sexual 

character given some circumstances and loses it as conditions change, thus adapting to new 

environments. This result is all the more interesting that recent phylogenetic studies show that 

losses of sexual characters are common (Omland & Lanyon 2000; Wiens 2001). Assuming a 

genetic correlation between male character and female preference would reduce the chances 

for reversibility. 



 

(c) Influence of  population size 

We have computed the probability for an individual to be mated in a monogamous 

population with fixed size, sex-ratio and proportion of compatibilities between individuals. 

We find that individuals are all the more likely not to be mated that the population is choosy 

and small. Hence, sexual selection generates an Allee effect, as already noted by Møller & 

Legendre (2001). When the population is small, females become less selective in order to 

maximise their chance to be mated, males are less likely to develop their character, and the 

chances for a runaway are lower. As the runaway reveals to be a reversible process, a 

character developed while the population is large may disappear as the population becomes 

smaller. This is consistent with what is observed for small populations colonizing islands 

(Grant 2001). We also find in some cases that the dimorphism between male and female 

characters decreases with population size, and can even invert, with females developing their 

character more than males do (figure 5b). This phenomenon has been reported for insular 

populations (Peterson 1997; Grant 2001). 

 

5. CONCLUSION 

 

Our results are in agreement with ideas and observations concerning sexual selection: (1) 

female preferences evolve before the development of male traits (sensory bias), (2) the 

runaway is a consequence of an arms race between sexes (sexual conflict), and (3) it is a 

reversible process (loss of sexual traits). In our model, population size has an influence on the 

evolutionary outcomes. Similar approaches could be useful to the understanding of insular 

phenomena, and to conservation problems.     
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APPENDIX 

 

We compute the fitness gradient of females (equation 3.1). The fitness gradient of males 

(equation 3.2) is computed in a similar way. 

The expression for fitness, )'('
2
1)'()'( ygPpvys ffff y

+= , is differentiated in order to 

obtain the fitness gradient: hppPgp
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We find at end: 
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FIGURE CAPTIONS 

 

Figure 1. Probability to be mated for a mutant male with attractiveness 'fp  (accepted by a 

proportion 'fp  of females) in a population of resident males with attractiveness fp  ( 100=n , 

5.0=mp , 5.0=fp ). 

 

Figure 2. (a) Female fitness gradient as a function of the proportion fp  of accepted males. 

Arrows show the way the proportion of accepted males evolves. It decreases when females 

are not selective enough, and increases when females are too selective. An equilibrium is 

reached for a proportion *
fp . (b) Male fitness gradient as a function of the proportion fp  of 

accepted males. Arrows show the way the proportion of accepted males evolves. It increases 

when males are not attractive enough, and decreases when males are too selective. An 

equilibrium is reached for a proportion **
fp  ( 100=n , 35.0=fd , 35.01 =mc , 62.0=h , 

45.00 =g , 1=mp ). 

 

Figure 3. (a) Evolution of the female preference y , the male character z  being fixed. Arrows 

show the way the preference evolves. (b) Evolution of male character z , the female 

preference y  being fixed (under the assumption of a linear trade-off). Arrows show the way 

the character evolves. Parameters are as in figure 2. 

 

Figure 4. Superposition of female isocline (dotted) and male isocline (plain) shows the way 

female preference y  and male character z  evolve (indicated by arrows). (a) The runaway 

does not occur. (b) The runaway does occur: with a constant cost, the preference and character 

never stop developing. (c) The runaway does occur: with an increasing cost, the preference 

and character develop to a point of equilibrium between natural and sexual selection. 

 

Figure 5. Sexual selection depending on population size. (a) Equilibrium values *
fp  and **

fp  

of the proportion fp  of accepted males as a function of population size ( 3.0=fd ,  

35.01 =mc , 5.0=h , 5.00 =g , 1=mp ). The condition for a runaway to occur ( ***
ff pp ≥ ) is 



satisfied when n  is large but not when n  is small. (b) Values of the male and female fitness 

gradients as a function of population size ( 2.011 == fm cc , 1=h , 10 =g , 01.0=fp ,  

9.0=mp ). Dimorphism is strong when n  is large, whereas it disappears when n  becomes 

smaller, and can even invert. 
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