Supplementary information S1

This section presents the computation of $\mathbb{E}(T(i, j))$, the expected trophic similarity between two species i and j in a random graph.

We denote P_{i} the set of predators of species i, p_{i} its set of preys. For any set $A,|A|$ denotes the number of its elements.

The trophic similarity of species i and j is defined as the number of shared predators $\left|P_{i} \cap P_{j}\right|$ plus the number of shared preys $\left|p_{i} \cap p_{j}\right|$ over the total number of predators $\left|P_{i} \cup P_{j}\right|$ plus the total number of preys $\left|p_{i} \cup p_{j}\right|$. Hence, the expected trophic similarity is

$$
\mathbb{E}(T(i, j))=\mathbb{E}\left(\frac{\left|P_{i} \cap P_{j}\right|+\left|p_{i} \cap p_{j}\right|}{\left|P_{i} \cup P_{j}\right|+\left|p_{i} \cup p_{j}\right|}\right) .
$$

The expectation has the general form

$$
\begin{equation*}
\mathbb{E}(T(i, j))=\sum_{k} k \mathbb{P}(X=k), \tag{1}
\end{equation*}
$$

where k denotes the possible values of the ratio $\frac{\left|P_{i} \cap P_{j}\right|+\left|p_{i} \cap p_{j}\right|}{\left|P_{i} \cup P_{j}\right|+\left|p_{i} \cup p_{j}\right|}$.
We first compute the similarity of predators, disregarding preys, and assume that $\left|P_{i}\right| \leqslant$ $\left|P_{j}\right|$. Next we compute the similarity of preys, disregarding predators, under the assumption $\left|p_{i}\right| \leqslant\left|p_{j}\right|$. Finally, we consider the general case.

We note that, if $\left|P_{i} \cap P_{j}\right|=N$ then

$$
\left|P_{i} \cup P_{j}\right|=\left|P_{i}\right|+\left|P_{j}\right|-\left|P_{i} \cap P_{j}\right|=\left|P_{j}\right|+\left|P_{i}\right|-N .
$$

Let us assume $\left|P_{i}\right| \leqslant\left|P_{j}\right|$. According to (1), the expected value of the predator similarity $P T_{i, j}$ is

$$
\mathbb{E}\left(P T_{i, j}\right)=\mathbb{E}\left(\frac{\left|P_{i} \cap P_{j}\right|}{\left|P_{i} \cup P_{j}\right|}\right)=\sum_{N=0}^{\left|P_{i}\right|}\left(\frac{N}{\left|P_{j}\right|+\left|P_{i}\right|-N}\right) \mathbb{P}\left(\left|P_{i} \cap P_{j}\right|=N\right) .
$$

To compute $\mathbb{P}\left(\left|P_{i} \cap P_{j}\right|=N\right)$ we think of an urn in which there are $\left|P_{i}\right|$ white balls and $S-\left|P_{i}\right|$ black balls. The probability of finding N white balls when $\left|P_{j}\right|$ balls are sampled from the urn without replacement is given by the hypergeometric distribution:

$$
\mathbb{P}\left(\left|P_{i} \cap P_{j}\right|=N\right)=\frac{\binom{\left|P_{i}\right|}{N}\binom{S-\left|P_{i}\right|}{\left|P_{j}\right| \mid N}}{\binom{S}{\left|P_{j}\right|}}=\mathcal{H}\left(N, S,\left|P_{i}\right|,\left|P_{j}\right|\right) .
$$

We obtain

$$
\begin{equation*}
\mathbb{E}\left(P T_{i, j}\right)=\sum_{N=0}^{\left|P_{i}\right|}\left(\frac{N}{\left|P_{j}\right|+\left|P_{i}\right|-N}\right) \mathcal{H}\left(N, S,\left|P_{i}\right|,\left|P_{j}\right|\right) . \tag{2}
\end{equation*}
$$

In the same way, for $\left|p_{i}\right| \leqslant\left|p_{j}\right|$, we have the expected prey similarity:

$$
\begin{equation*}
\mathbb{E}\left(p T_{i, j}\right)=\sum_{n=0}^{\left|p_{i}\right|}\left(\frac{n}{\left|p_{j}\right|+\left|p_{i}\right|-n}\right) \mathcal{H}\left(n, S,\left|p_{i}\right|,\left|p_{j}\right|\right) . \tag{3}
\end{equation*}
$$

The assumptions $\left|P_{i}\right| \leqslant\left|P_{j}\right|$ (respectively $\left|p_{i}\right| \leqslant\left|p_{j}\right|$) are easily released by replacing $\left|P_{i}\right|$ by $\min \left(\left|P_{i}\right|,\left|P_{j}\right|\right)$ and P_{j} by $\max \left(\left|P_{i}\right|,\left|P_{j}\right|\right)$ (respectively $\left|p_{i}\right|$ by $\min \left(\left|p_{i}\right|,\left|p_{j}\right|\right)$ and p_{j} by $\left.\max \left(\left|p_{i}\right|,\left|p_{j}\right|\right)\right)$ in (2) and (3):

$$
\begin{aligned}
\mathbb{E}\left(P T_{i, j}\right) & =\sum_{N=0}^{\min \left(\left|P_{i}\right|,\left|P_{j}\right|\right)}\left(\frac{N}{\left|P_{j}\right|+\left|P_{i}\right|-N}\right) \mathcal{H}\left(N, S, \min \left(\left|P_{i}\right|,\left|P_{j}\right|\right), \max \left(\left|P_{i}\right|,\left|P_{j}\right|\right)\right), \\
\mathbb{E}\left(p T_{i, j}\right) & =\sum_{n=0}^{\min \left(\left|p_{i}\right|,\left|p_{j}\right|\right)}\left(\frac{n}{\left|p_{j}\right|+\left|p_{i}\right|-n}\right) \mathcal{H}\left(n, S, \min \left(\left|p_{i}\right|,\left|p_{j}\right|\right), \max \left(\left|p_{i}\right|,\left|p_{j}\right|\right)\right) .
\end{aligned}
$$

Finally, we consider simultaneously predators and preys. The probability to obtain N and n is, as these events are independent in a random graph,

$$
\mathbb{P}\left(\left|P_{i} \cap P_{j}\right|=N\right) \times \mathbb{P}\left(\left|p_{i} \cap p_{j}\right|=n\right)
$$

Considering all possible couples (N, n), we obtain the expectation of the trophic similarity between two species i and j :

$$
\begin{array}{r}
\mathbb{E}(T(i, j))=\sum_{N=0}^{\min \left(\left|P_{i}\right|,\left|P_{j}\right|\right)} \sum_{n=0}^{\min \left(\left|p_{i}\right|,\left|p_{j}\right|\right)}\left(\frac{N+n}{\left.\left|P_{i}\right|+\left|P_{j}\right|\right)-N+\left|p_{i}\right|+\left|p_{j}\right|-n}\right) \times \\
\mathcal{H}\left(N, S, \min \left(\left|P_{i}\right|,\left|P_{j}\right|\right), \max \left(\left|P_{i}\right|,\left|P_{j}\right|\right)\right) \times \mathcal{H}\left(n, S, \min \left(\left|p_{i}\right|,\left|p_{j}\right|\right), \max \left(\left|p_{i}\right|,\left|p_{j}\right|\right)\right) .
\end{array}
$$

