Supplementary information S1

This section presents the computation of $\mathbb{E}(T(i, j))$, the expected trophic similarity between two species *i* and *j* in a random graph.

We denote P_i the set of predators of species i, p_i its set of prevs. For any set A, |A| denotes the number of its elements.

The trophic similarity of species i and j is defined as the number of shared predators $|P_i \cap P_j|$ plus the number of shared preys $|p_i \cap p_j|$ over the total number of predators $|P_i \cup P_j|$ plus the total number of preys $|p_i \cup p_j|$. Hence, the expected trophic similarity is

$$\mathbb{E}\left(T(i,j)\right) = \mathbb{E}\left(\frac{|P_i \cap P_j| + |p_i \cap p_j|}{|P_i \cup P_j| + |p_i \cup p_j|}\right).$$

The expectation has the general form

$$\mathbb{E}\left(T(i,j)\right) = \sum_{k} k \mathbb{P}(X=k),\tag{1}$$

where k denotes the possible values of the ratio $\frac{|P_i \cap P_j| + |p_i \cap p_j|}{|P_i \cup P_j| + |p_i \cup p_j|}$.

We first compute the similarity of predators, disregarding preys, and assume that $|P_i| \leq |P_j|$. Next we compute the similarity of preys, disregarding predators, under the assumption $|p_i| \leq |p_j|$. Finally, we consider the general case.

We note that, if $|P_i \cap P_j| = N$ then

$$|P_i \cup P_j| = |P_i| + |P_j| - |P_i \cap P_j| = |P_j| + |P_i| - N.$$

Let us assume $|P_i| \leq |P_j|$. According to (1), the expected value of the predator similarity $PT_{i,j}$ is

$$\mathbb{E}(PT_{i,j}) = \mathbb{E}\left(\frac{|P_i \cap P_j|}{|P_i \cup P_j|}\right) = \sum_{N=0}^{|P_i|} \left(\frac{N}{|P_j| + |P_i| - N}\right) \mathbb{P}(|P_i \cap P_j| = N).$$

To compute $\mathbb{P}(|P_i \cap P_j| = N)$ we think of an urn in which there are $|P_i|$ white balls and $S - |P_i|$ black balls. The probability of finding N white balls when $|P_j|$ balls are sampled from the urn without replacement is given by the hypergeometric distribution:

$$\mathbb{P}(|P_i \cap P_j| = N) = \frac{\binom{|P_i|}{N}\binom{S-|P_i|}{|P_j|-N}}{\binom{S}{|P_j|}} = \mathcal{H}(N, S, |P_i|, |P_j|).$$

We obtain

$$\mathbb{E}(PT_{i,j}) = \sum_{N=0}^{|P_i|} \left(\frac{N}{|P_j| + |P_i| - N}\right) \mathcal{H}(N, S, |P_i|, |P_j|).$$
(2)

In the same way, for $|p_i| \leq |p_j|$, we have the expected prey similarity:

$$\mathbb{E}(pT_{i,j}) = \sum_{n=0}^{|p_i|} \left(\frac{n}{|p_j| + |p_i| - n}\right) \mathcal{H}(n, S, |p_i|, |p_j|).$$
(3)

The assumptions $|P_i| \leq |P_j|$ (respectively $|p_i| \leq |p_j|$) are easily released by replacing $|P_i|$ by $\min(|P_i|, |P_j|)$ and P_j by $\max(|P_i|, |P_j|)$ (respectively $|p_i|$ by $\min(|p_i|, |p_j|)$) and p_j by $\max(|p_i|, |p_j|)$) in (2) and (3):

$$\mathbb{E}(PT_{i,j}) = \sum_{N=0}^{\min(|P_i|, |P_j|)} \left(\frac{N}{|P_j| + |P_i| - N}\right) \mathcal{H}(N, S, \min(|P_i|, |P_j|), \max(|P_i|, |P_j|)),$$

$$\mathbb{E}(pT_{i,j}) = \sum_{n=0}^{\min(|p_i|, |p_j|)} \left(\frac{n}{|p_j| + |p_i| - n}\right) \mathcal{H}(n, S, \min(|p_i|, |p_j|), \max(|p_i|, |p_j|)).$$

Finally, we consider simultaneously predators and preys. The probability to obtain N and n is, as these events are independent in a random graph,

$$\mathbb{P}(|P_i \cap P_j| = N) \times \mathbb{P}(|p_i \cap p_j| = n).$$

Considering all possible couples (N, n), we obtain the expectation of the trophic similarity between two species i and j:

$$\mathbb{E}\left(T(i,j)\right) = \sum_{N=0}^{\min(|P_i|,|P_j|)} \sum_{n=0}^{\min(|p_i|,|p_j|)} \left(\frac{N+n}{|P_i|+|P_j|) - N + |p_i| + |p_j| - n}\right) \times \mathcal{H}(N, S, \min(|P_i|,|P_j|), \max(|P_i|,|P_j|)) \times \mathcal{H}(n, S, \min(|p_i|,|p_j|), \max(|p_i|,|p_j|)).$$