Motif databases and comparison

Morgane Thomas-Chollier

Computational systems biology - IBENS mthomas@biologie.ens.fr

IBENS

M2 – Computational analysis of cis-regulatory sequences 2015/2016

Denis Thieffry, Jacques van Helden and Carl Herrmann kindly shared some of their slides.

1 - Collections of motifs

2 - General principle of motif comparison

Common motif problems

genes

Co-expressed

Questions

- Could we discover some signals (motifs) on the basis of these sequences?
 - » This is a problem of motif discovery ("ab initio" motif detection)
- Can we afterwards **locate** the instances of these discovered motifs in the input sequences?
 - » This is a problem of pattern matching.
- Can we predict the transcription factor that would bind the discovered motifs?
 - By comparison with a collection of known factors => motif comparison problem

I have predicted a motif, what's next?

seq	identifier
gtcgaa	gtcgaa ttcgac
tcgaca	tcgaca tgtcga
cgacaa	cgacaa ttgtcg
cggcag	cggcag ctgccg

Discovered motif

locate the instances of these discovered motifs in the input sequences

predict the transcription factor

- Compare motif against collections of known motifs
- Get more information from external sources

Predict the transcription factor

Collections of known motifs

- Public (free) vs commercial databases
- General vs organism or experiment specific databases
- Many different databases (not united, information spreaded over many different sources)
- Often linked to analyses tools... warning, they can be very basic tools!

Characteristics of all databases

- » Incomplete!!
- » Redundant!!
- » Heterogenity in terms of quality (mixture of matrices resulting from smalland large-scale experiments)
- » Different file formats
- » Original sequences used to make the matrix is often not accessible

TRANSFAC - Gene transcription factor database

- Organisms
 - » Eukaryotes
 - » Particular emphasis on mammals (specially human, mouse, rat)
- Distribution
 - » The public version is not updated anymore (since 2007!)
 - » Commercial version (TRANSFAC PRO)
 - » Distributed by BioBaseTM
 - http://www.biobase.de/
- Data content
 - » Transcription factors
 - » Binding sites
 - Evidences!
 - Publications!
 - » Position-specific scoring matrices
- Pattern matching tools (patch, match)

TRANSFAC – matrix example – V\$SOX2_Q6

Field descriptions

Accession no.

AC

```
XX
       (field separator)
ID
       Identifier
DT
       Date: author
NA
       Name of the binding factor
DE
       Short factor description
BF
       List of linked factor entries
                      Position within the aligned sequences,
PO
       ACGT
01
                  frequency of A, C, G, T residues, resp.;
02
                  last column: deduced consensus in
03
                  IUPAC 15-letter code
BA
       Statistical basis
BS
       Factor binding sites underlying the matrix
BS
       (SITE accession no.; Start position for matrix sequence;
       length of sequence used;
BS
       number of gaps inserted; strand orientation)
CC
        Comments
RX
       MEDLINE ID
RN
       Reference no.
RA
       Reference authors
RT
       Reference title
RL
       Reference data
```

```
AC
   M01272
XX
    V$SOX2 Q6
ID
XX
DΤ
    08.07.2009 (created); dtc.
    Copyright (C), Biobase GmbH.
XX
    SOX2
NA
XX
    T09507; Sox-xbb1; Species: mouse, Mus musculus.
    T01836; Sox2; Species: mouse, Mus musculus.
    T04915; Sox2; Species: human, Homo sapiens.
    T01837; Sox2; Species: chick, Gallus gallus.
   T10231; Sox2; Species: Mammalia.
    T09970; Sox2; Species: human, Homo sapiens.
    T10885; Sox2; Species: monkey, Cercopithecus aethiops.
XX
P0
        Α
                С
01
                                      Ν
02
                                      Ν
03
                                      N
                5
04
                                      Ν
                9
                                      С
05
06
               12
                                      C
07
                0
                       0
                                      W
80
        0
                0
                             16
                                      Т
09
                       0
                             16
                                      Т
                                      G
10
                      16
11
                       0
                             16
                                      т
12
                                      т
13
                                      W
14
                             11
                                      т
15
        1
                              5
                                      K
                6
16
                              2
                                      Ν
XX
    16 compiled sequences
XX
    gccctcattgttatgc; R15133; 13; 16;; n.
   AAACTCTTTGTTTGGA; R15201; -1; 16;; p.
    ttcaccattgttctag; R15231; 11; 16;; n.
   GACTCTATTGTCTCTG; R15267; 11; 16;; p.
    GATATCTTTGTTTCTT; R16367; -4; 16;; p.
```

tgcacctttgttatgc; R17099; 5; 16;; n. aattccattgttatga; R19276; 15; 16;; n.

aaactctttgtttgga; R19367; 20; 16;; n. atggacattgtaatgc; R19510; 15; 16;; n.

8

JASPAR

- http://jaspar.genereg.net/
- Public database
- Data content
 - » PSSM
 - "sites" (i.e. sequences having served to build the matrix, but no genomic position)
 - » Core: transcription factor-specific matrices
 - » Collection: matrices for families of transcription factors
- Tools
 - » Pattern matching, matrix randomization

Sequences for model MA0212.1		
Site	Occurences	
tgt TAATCC c	1	
tg GGATTA ta	1	
ttac TAATCC	1	
gct TAATCC g	1	
ggt TAATCC g	1	
agc TTATCC	1	
gaga TAATCC	1	
gtcc TAATCC	1	
cgt TAATCT c	1	
at GGATTA ga	2	
cgctTAATCC	1	
cggg TAATCC	1	
GGCTTA agcc	1	
tgt TAATCC g	1	
tgt TAATCC	1	
tct TAATCC c	1	
gg TTATCC g	1	
gcg TAATCC a	1	
gggt TAATCC	1	
tctaTAATCC	1	
ggtt TAATCC	1	

RegulonDB: Transcriptional regulation in Escherichia coli

- RegulonDB Web site
 - » http://regulondb.ccg.unam.mx/
- Model organism: Escherichia coli
- Data content
 - » Transcription factors
 - » Transcription factor binding sites (TFBS)
 - » Position-specific scoring matrices (PSSM)
 - » Promoters
 - » Operons
- Collaboration with EcoCyc
 - » EcoCyc is the reference database about metabolism in Escherichia coli
 - » RegulonDB is integrated in the EcoCyc database

Other databases

- PAZAR http://www.pazar.info/
 - » Unification of independent collection of transcription factor binding sites and motifs.
- YeasTract http://www.yeastract.com/
 - » Yeast-specific database. Factors, binding sites and motifs + tools.
- FlyReg http://www.flyreg.org/
 - » Drosophila DNase I Footprint Database
- PlantCARE
 http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
 - » Plant Cis-Acting Regulatory Elements

Some new collections

- ChIP-seq => generation of high-quality motifs for many TFs
 - » Plenty of new databases / collections (supp data of articles)
- Meta-databases: to regroup all these little collections
 - » FootprintDB (http://floresta.eead.csic.es/footprintdb/)

Welcome to footprintDB

Current version of footprintDB includes:

- 3887 Transcription Factors (TFs, 3095 unique)
- 4681 Position Specific Scoring Matrices (PSSMs, PWMs or DBMs, 4646 unique)
- 22056 DNA Binding Sites (DBSs, 18840 unique)

extracted from the literature and other repositories.

Redundancy in databases

- High level of redundancy
 - » Within a database (several entries for a given TF)
 - » Across databases (very similar or identical motif listed)

How to obtain a non-redundant dataset?

- Compare the motif + cluster them
 - » Often a manual and not reproducible work
 - » Very few motif clustering program

Matrix-matrix comparison

- Basic algorithm:
 - » Shifting a matrix against another one to align it best
 - » Score the matrix alignment => distance
 - » Return the minimal distance and the shift position

- In RSAT: compare-matrices
- Other tools :
 - » STAMP (http://www.benoslab.pitt.edu/stamp/)
 - » Tomtom (<u>http://meme.nbcr.net/meme/cgi-bin/tomtom.cgi</u>)

Matrix clustering

- New program in RSAT:
 - » Matrix-clustering (still active development, unpublished)

Dynamic visualisation of the clusters, allows collapsing

Applications of motif comparison and problems

- Interpretation of discovered patterns (e.g.from microarray clusters)
 - » Compare discovered patterns with annotated cis-acting elements in order to predict potential trans-acting factors.
- Compare patterns discovered in <u>different datasets</u> (e.g. co-expressed clusters)
- Compare patterns discovered in <u>different organisms</u>

Issues

- » Types of comparisons
 - String-based versus string-based
 - Matrix-based versus matrix-based
 - Comparison between string-based and matrix-based patterns
- » Scoring the matching
 - Boolean matching (TRUE or FALSE)
 - Count of matching residues
 - P-value to estimate the significance of the matching