Motif discovery

Morgane Thomas-Chollier

Computational systems biology - IBENS mthomas@biologie.ens.fr

IBENS

M2 – Computational analysis of cis-regulatory sequences 2015/2016

Denis Thieffry, Jacques van Helden and Carl Herrmann kindly shared some of their slides.

Co-expressed genes

clusters of **co-expressed genes** during oxidative stress in yeast

Are they co-regulated?

If so, what is the TF?

Motif discovery

1 - Understand what is a motif discovery problem

2 – Motif discovery approaches

- Word counting
- Gibbs sampling

3 – Important parameters

Motif discovery

1 - Understand what is a motif discovery problem

2 – Motif discovery approaches

- Word counting
- Gibbs sampling

3 – Important parameters

Co-expressed genes

Knowing that a set of genes are co-regulated, one can expect that their upstream regions contains some regulatory signal.

Motif discovery

Problem: If there is a common regulating factor, can we discover its motif (some signal) on the basis of these sequences ONLY?

- We have a set of sequences
- We suspect that they share some functional signal
- We ignore the transcription factors involved in this regulation.
- We ignore the cis-acting elements

Typical motif discovery problems

Motif discovery

1 - Understand what is a motif discovery problem

2 – Motif discovery approaches

- Word counting
- Gibbs sampling

3 – Important parameters

Principle: detect unexpected patterns

- Binding sites are represented as "words" = "string"="k-mer"
 - e.g. acgtga is a 6-mer
- Signal is likely to be more frequent in the upstream regions of the co-regulated genes than in a random selection of genes
- We will thus detect over-represented words

Motif discovery using word counting

Idea:

motifs corresponding to binding sites are generally repeated in the dataset

→ capture this statistical signal

Algorithm

• count occurrences of **all k-mers** in a set of related sequences (promoters of co-expressed genes, in ChIP bound regions,...)

Let's take an example (yeast Saccharomyces cerevisiae)

- NIT
 - 7 genes expressed under low nitrogen conditions
- MET
 - 10 genes expressed in absence of methionine
- PHO
 - 5 genes expressed under phosphate stress

PHO aaaaaa|ttttt 51 aaaaaq cttttt 15 aagaaa|tttctt 14 qaaaaa | tttttc 13 tqccaa ttqqca 12 aaaaat|attttt 12 aaatta|taattt 12 agaaaa ttttct 11 caaqaa | ttcttq 11 aaacgt acgttt 11 aaaqaa | ttcttt 11 acqtqc | qcacqt 10 aataat attatt 10 aagaag | cttctt 10 atataa ttatat 10

MET		
aaaaaa	tttttt	105
atatat	atatat	41
gaaaaa	tttttc	40
tatata	tatata	40
aaaaat	attttt	35
aagaaa	tttctt	29
agaaaa	ttttct	28
aaaata	tatttt	26
aaaaag	cttttt	25
agaaat	atttct	24
aaataa	ttattt	22
taaaaa	ttttta	21
tgaaaa	ttttca	21
ataata	tattat	20
atataa	ttatat	20

NIT		
aaaaaa	tttttt	80
cttatc	gataag	26
tatata	tatata	22
ataaga	tcttat	20
aagaaa	tttctt	20
gaaaaa	tttttc	19
atatat	atatat	19
agataa	ttatct	17
agaaaa	ttttct	17
aaagaa	ttcttt	16
aaaaca	tgtttt	16
aaaaag	cttttt	15
agaaga	tcttct	14
tgataa	ttatca	14
atataa	ttatat	14

The most frequent oligonucleotides are not informative

- A (too) simple approach would consist in detecting the most frequent oligonucleotides (for example hexanucleotides) for each group of upstream sequences.
- This would however lead to deceiving results.
 - In all the sequence sets, the same kind of patterns are selected: AT-rich hexanucleotides.

PHO		
aaaaaa	ttttt	51
aaaaag	cttttt	15
aagaaa	tttctt	14
gaaaaa	tttttc	13
tgccaa	ttggca	12
aaaaat	attttt	12
aaatta	taattt	12
agaaaa	ttttct	11
caagaa	ttcttg	11
aaacgt	acgttt	11
aaagaa	ttcttt	11
acgtgc	gcacgt	10
aataat	attatt	10
aagaag	cttctt	10
atataa	ttatat	10

MET		
aaaaaa	ttttt	105
atatat	atatat	41
gaaaaa	ttttc	40
tatata	tatata	40
aaaaat	attttt	35
aagaaa	tttctt	29
agaaaa	ttttct	28
aaaata	tatttt	26
aaaaag	cttttt	25
agaaat	atttct	24
aaataa	ttattt	22
taaaaa	ttttta	21
tgaaaa	ttttca	21
ataata	tattat	20
atataa	ttatat	20

NIT		
aaaaaa	tttttt	80
cttatc	gataag	26
tatata	tatata	22
ataaga	tcttat	20
aagaaa	tttctt	20
gaaaaa	tttttc	19
atatat	atatat	19
agataa	ttatct	17
agaaaa	ttttct	17
aaagaa	ttcttt	16
aaaaca	tgtttt	16
aaaaag	cttttt	15
agaaga	tcttct	14
tgataa	ttatca	14
atataa	ttatat	14

A more relevant criterion for over-representation

- The most frequent patterns do not reveal the motifs specifically bound by specific transcription factors.
- They merely reflect the compositional biases of upstream sequences.
- A more relevant criterion for over-representation is to detect patterns which
 are more frequent in the upstream sequences of the selected genes (coregulated) than the random expectation.
- The random expectation is calculated by counting the frequency of each pattern in the complete set of upstream sequences (all genes of the genome).

=> "Background"

Motif discovery using word counting

Idea:

motifs corresponding to binding sites are generally repeated in the dataset → capture this statistical signal

Algorithm

- count occurrences of **all k-mers** in a set of related sequences (promoters of co-expressed genes, in ChIP bound regions,...)
- estimate the expected number of occurrences from a background model
 - empirical based on observed k-mer frequencies
 - theoretical background model (Markov Models)

Estimation of word expected frequencies from background sequences

Example:

6nt frequencies in the whole set of 6000 yeast upstream sequences

;seq	identifier	observed_freq occ	
aaaaaa	aaaaaa ttttt	0,00510699	14555
aaaaac	aaaaac gtttt	0,00207402	5911
aaaaag	aaaaag ctttt	0,00375191	10693
aaaaat	aaaaat atttt	0,00423577	12072
aaaaca	aaaaca tgttt	0,0019828	5651
aaaacc	aaaacc ggttt	0,00088526	2523
aaaacg	aaaacg cgttt	0,00090105	2568
aaaact	aaaact agttt	0,0014621	4167
aaaaga	aaaaga tcttt	0,00323016	9206
aaaagc	aaaagc gcttt	0,00135824	3871
aaaagg	aaaagg ccttt	0,0017849	5087
aaaagt	aaaagt acttt	0,0019035	5425
aaaata	aaaata tattt	0,00336805	9599
aaaatc	aaaatc gattt	0,00131368	3744
aaaatg	aaaatg cattt	0,00185648	5291
aaaatt	aaaatt aattt	0,00269156	7671
aaacaa	aaacaa ttgtt	0,00209999	5985
aaacac	aaacac gtgtt	0,00071684	2043
aaacag	aaacag ctgtt	0,00096491	2750
aaacat	aaacat atgtt	0,00108982	3106
aaacca	aaacca tggtt	0,00074421	2121

6nt frequencies differ between coding and non-coding sequences

Hexanucleotide occurrences in upsteam sequences of the NIT family

NIT		
aaaaaa	tttttt	80
cttatc	gataag	26
tatata	tatata	22
ataaga	tcttat	20
aagaaa	tttctt	20
gaaaaa	tttttc	19
atatat	atatat	19
agataa	ttatct	17
agaaaa	ttttct	17
aaagaa	ttcttt	16
aaaaca	tgtttt	16
aaaaag	cttttt	15
agaaga	tcttct	14
tgataa	ttatca	14
atataa	ttatat	14

Estimation of background frequencies from a Markov Model

- Estimate the frequency using a statistical model
 - Bernouilli model (=Markov order 0): p(A), p(C), p(G), p(T)
 Assumes independence between successive nucleotides

simplest model: $p(A)=p(C)=p(G)=p(T) \rightarrow p=0.25$ => NOT realistic does not reflect biological sequences !!!

frequencies in non-coding upstream regions of S. cerevisiae p(A)=0.3 p(C)=0.2 p(G)=0.2 p(T)=0.3

Markov model

The probability of each residue depends on the m preceding residues. The parameter m is called the order of the Markov model

Motif discovery using word counting

Example:

19 genes from *Saccharomyces cerevisiae* involved in methionine biosynthesis pathway

Are they co-regulated ?
Do they share common regulatory motifs ?

Principle

- Count occurrences of k=6 mers in the 800 bp upstream of the TSS (!! on both strands!!)
- 9000 possible positions
- compare observed vs expected occurences

Motif discovery using word counting

How to evaluate expected number of occurrences?

Estimated frequency of **ACGTGA** in S. cerevisae?

- observed frequency of this word in the whole genome
 - all intergenic sequences in the genome:
 1026 occurrences for 3310685 positions → p = 3.09e-4 (2.78 expected occurrences for 9000 positions)

all upstream sequences in the genome :
 921 occurrences for 2804964 positions → p = 3.33e-4 (2.95 expected occurrences for 9000 positions)

Estimated frequency of **ACGTGA in** S. cerevisae?

- estimate the frequency using a statistical model
 - Bernouilli model : p(A), p(C), p(G), p(T)

$$p(ACGTGA) = p(A)^2 \times p(C) \times p(G)^2 \times p(T) \rightarrow p = 3.94e-4 (3.70)$$

Markov models

- Markov model order 1 : p = 3.48e-4 (3.48)p(ACGTGA) = p(A) p(C|A) p(G|C) p(T|G) p(G|T) p(A|G)
- Markov model order 2 : p = 4.87e-4 (4.87)p(ACGTGA) = p(AC)x p(G|AC)x p(T|CG)x p(G|GT)x p(A|TG)
- Markov model order 3 : p = 7.4e-4 (6.96)p(ACGTGA) = p(ACG)x p(T|ACG)x p(G|CGT)x p(A|GTG)

Expected occurrences under different background models

Estimated frequency of **ACGTGA** in S. cerevisae?

	Method	Frequency (p)	Occurrences for 9000 positions
Observation	obvserved in the dataset		18
	intergenic frequency	3.25e-4	3.05
	promoter frequency	3.35e-4	3.15
	Markov order 0	3.94e-4	3.70
Estimations	Markov order 1	3.70e-4	3.48
	Markov order 2	5.19e-4	4.87
	Markov order 3	7.42e-4	6.96
	promoter frequency in human	1.63e-4	1.53

Motif discovery using word counting

Idea:

motifs corresponding to binding sites are generally repeated in the dataset → capture this statistical signal

Algorithm

- count occurrences of **all k-mers** in a set of related sequences (promoters of co-expressed genes, in ChIP bound regions,...)
- estimate the expected number of occurrences from a background model
 - empirical based on observed k-mer frequencies
 - theoretical background model (Markov Models)
- statistical evaluation of the deviation observed (P-value/E-value)

How « big » is the surprise to observe 18 occurrences when we expect 2.95?

Statistical evaluation

How « big » is the surprise to observe 18 occurrences when we expect 2.95?

- at each position in the sequence, there is a probability *p* that the word starting at this position is ACGTGA
- we consider n positions
- what is the probability that k of these n positions correspond to ACGTGA?
- **Application** : p = 3.4e-4 (intergenic frequencies)

n = 9000 position

x = 18 observed occurences

$$P(X \ge x) = \sum_{i=x}^{T} \frac{n!}{i!(n-i)!} p^{i} (1-p)^{n-i}$$

Binomial distribution to measure the "surprise"

Statistical evaluation : significance

- We observe x occurrences of a word. Is this word significantly
 - Over-represented ?
 - Under-represented ?
- Choice of a scoring scheme
 - Which theoretical distribution should we use to score this significance?

Other scoring schemes

Several statistics can be used to score the significance of the observed number of occurrences

- Ratio r = CW / EW
- ⇒ overestimates the importance of words with weak expected frequencies, no correction for self-overlapping patterns
- ⇒ Never use the observed/expected ratio to estimate over/under representation!
 - Log likelihood K = FW In(FW / PW)
- ⇒ no estimation of the P-value

- Binomial distribution
- ⇒ no direct correction for self-overlapping patterns
 - Poisson distribution
 - Compound Poisson
- ⇒ See « DNA, words and model : Statistics of Exceptional Words » Schbath & Robin

Statistical evaluation

seq	identifier	exp_freq	occ	exp_occ	occ_P	occ_E
cacgtg	cacgtg cacgtg	0.0001569968432	17	1.47	5e-13	1.0e-09
acgtga	acgtga tcacgt	0.0003355962588	18	3.15	7.3e-09	1.5e-05
ccacag	ccacag ctgtgg	0.0002365577659	14	2.22	1e-07	2.1e-04
gccaca	gccaca tgtggc	0.0002897084237	15	2.72	2e-07	4.1e-04
actgtg	actgtg cacagt	0.0003762020409	16	3.53	1e-06	2.1e-03
cgtgca	cgtgca tgcacg	0.0002325962261	11	2.18	1.8e-05	3.8e-02

- *p-value*: what is the risk you take by rejecting the null hypothesis for one particular event (i.e. consider it to be significant while this is false)
- but you are testing 2080 possible hexanucleotides ("multiple testing") for each position!
- if you are taking 2080 times a risk of p=1e-7, on average, in 2080*1e-7=2.1e-4 of these cases, you will be wrong \rightarrow **E-value**

Motif discovery using word counting

Idea:

motifs corresponding to binding sites are generally repeated in the dataset → capture this statistical signal

Algorithm

- count occurrences of **all k-mers** in a set of related sequences (promoters of co-expressed genes, in ChIP bound regions,...)
- estimate the expected number of occurrences from a background model
 - empirical based on observed k-mer frequencies
 - theoretical background model (Markov Models)
- statistical evaluation of the deviation observed (P-value/E-value)
- Select all words above a defined threshold

$$E$$
-value = $P(X >= x) * T$
 $sig = -log_{10}(E$ -value)

Where

T is the number of tested words

- Takes into consideration the dependency of the threshold on word length
 - Different number of possible words T depending on k-mer
- Provides an intuitive perception of the level of over-representation

sig > 0 1 such word at random in each sequence set

sig > 1 1 such word expected every 10 sequence sets

sig > 2 1 such word expected every 100 sequence sets

. . .

 This index is very convenient to interpret: higher valuescorrespond to exceptional patterns.

A significance of 0 corresponds to an E-value of 1.

A significance of 2 to an E-value of 1e-2 (i.e. one expects no more than 0.01 false positives in the whole collection of patterns).

Assembling overlapping words

Warning: the words are already a result!!!

seq	identifier	exp_freq	occ	exp_occ	occ_P	occ_E
cacgtg	cacgtg cacgtg	0.0001569968432	17	1.47	5e-13	1.0e-09
acgtga	acgtga tcacgt	0.0003355962588	18	3.15	7.3e-09	1.5e-05
ccacag	ccacag ctgtgg	0.0002365577659	14	2.22	1e-07	2.1e-04
gccaca	gccaca tgtggc	0.0002897084237	15	2.72	2e-07	4.1e-04
actgtg	actgtg cacagt	0.0003762020409	16	3.53	1e-06	2.1e-03
cgtgca	cgtgca tgcacg	0.0002325962261	11	2.18	1.8e-05	3.8e-02
aactgt	aactgt acagtt	0.0006168655788	17	5.78	0.00011	2.4e-01
agtcat	agtcat atgact	0.0005039616969	15	4.73	0.00012	2.6e-01
tagtca	tagtca tgacta	0.0004613751449	14	4.33	0.00017	3.5e-01
agccac	agccac gtggct	0.0002599968758	10	2.44	0.00023	4.7e-01
cgtgac	cgtgac gtcacg	0.0001695417189	8	1.59	0.00025	5.2e-01
cgcgca	cgcgcaltgcgcg	0.0001715224888	8	1.61	0.00027	5.6e-01
acgtgc	acgtgc gcacgt	0.0002276443015	9	2.13	0.00038	7.9e-01
gactca	gactca tgagtc	0.0002319359695	9	2.18	0.00043	9.0e-01

Word assembly to form longer motifs and matrices

```
;assembly # 1
                seed: cacqtq
   alignt
                    rev cpl
gtcacg....
                 ....cgtgac
.tcacqt...
                 ...acgtga.
..cacgtg..
                 ..cacgtg..
...acgtga.
                 .tcacgt...
....cgtgac
                gtcacg....
gtcacgtgac
                gtcacgtgac
;assembly # 2
                seed: ccacag
```

```
alignt
                    rev cpl
                 ....gtggct
agccac....
.gccaca...
                 ...tgtggc.
..ccacag..
                 ..ctgtgg..
...cacagt.
                 .actgtg...
....acagtt
                 aactgt....
agccacagtt
                 aactgtggct
                 seed: cgtgca
;assembly # 3
    alignt
                    rev cpl
gtcacg....
                 ....cgtgac
.tcacgt...
                 ...acgtga.
..cacgtg..
                 ..cacgtg..
...acgtgc.
                 .gcacgt...
....cgtgca
                 tgcacg....
gtcacgtgca
                 tgcacgtgac
```

Hexanucleotide analysis of the GAL family

Sequence	exp freq	осс	exp		E-value	sig	matching sequences
agacat	0.00044	9	2.1	0.00033	0.69	0.16	4

Genes GAL1, GAL2, GAL7, GAL80, MEL1, GCY1

Known motifs Factors

CGGn₅wn₅CCG Gal4p

With the GAL family, the program returns a single pattern.

The significance of this pattern is very low.

This can be considered as a negative result: the program did not detect any really significant pattern.

Why did the program fail to discover the GAL4 motif?

DNA/protein interface of the yeast transcription factor Gal4p

CGG n11 CCG

dyad = pairs of words separated by a spacer

Motif discovery

1 - Understand what is a motif discovery problem

2 – Motif discovery approaches

- Word counting
- Gibbs sampling => for after matrices will be introduced

3 – Important parameters

Motif discovery

1 - Understand what is a motif discovery problem

2 – Motif discovery approaches

- Word counting
- Gibbs sampling

3 – Important parameters

Important parameters

Size of upstream sequences

- organism-dependent : -400 to +50bp bacteria, -800 to -1 bp fungi
- in metazoan, regulatory regions are located several kbs to several Mb!!

Size of the clusters

- Problem of signal/noise ratio.

Background

- problem of heterogeneity of sequences in **vertebrates**. String-based motif discovery yields poor results when using upstream regions of clusters of genes. However, the same approaches provides good results in ChIP-seq datasets

- Choice of a model:

Markov chain: on basis of subword frequencies

External reference (e.g. word frequencies observed in the whole set of upstream sequences)

Pattern-discovery tools poorly perform in human compared to yeast

Tompa et al, Assessing computational tools for the discovery of TFBS, Nat biotech 2005

Technicalities of word counting

- Self-overlapping words
 - Stretches of repetitive sequences can bias countings
 - Probability of further occurrences of a repetitive motif is dependent of previous occurrences
 - **Solution**: discard overlapping occurrences of the **same** k-mer

Counting all occurrences \rightarrow 6

ATATATATATATATAT
ATATAT

Discarding overlapping matches \rightarrow 2

ATATAT

Technicalities of word counting

- duplicated regulatory regions
 - Over-representation statistics rely on the independence of successive positions
 - Cases of large sequence duplications
 - recent duplication of a gene along with its upstream sequence
 - intergenic region located between two divergently transcribed genes
 - → the same sequence is taken twice
 - Bias
 - all the words included in duplicated regions are over-estimated
 - Treatment
 - sequences have to be purged before any analysis

Technicalities of word counting

- TFs can bind on both strands
- however, we only work with single stranded sequences
- if the BS consensus is ATTTGCA on the reference strand, ACGTTTA corresponds to the same BS, but on the reverse strand!
- hence 4^6 = 4096 6-mers, but only2080 pairs of 6-mers must be considered

