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This protocol explains how to discover functional signals in genomic sequences by detecting over- or under-represented
oligonucleotides (words) or spaced pairs thereof (dyads) with the Regulatory Sequence Analysis Tools (http://rsat.ulb.ac.be/rsat/).
Two typical applications are presented: (i) predicting transcription factor-binding motifs in promoters of coregulated genes and
(ii) discovering phylogenetic footprints in promoters of orthologous genes. The steps of this protocol include purging genomic
sequences to discard redundant fragments, discovering over-represented patterns and assembling them to obtain degenerate motifs,
scanning sequences and drawing feature maps. The main strength of the method is its statistical ground: the binomial significance
provides an efficient control on the rate of false positives. In contrast with optimization-based pattern discovery algorithms, the
method supports the detection of under- as well as over-represented motifs. Computation times vary from seconds (gene clusters) to
minutes (whole genomes). The execution of the whole protocol should take B1 h.

INTRODUCTION
This is the second article in a series of four protocols for the analysis
of regulatory sequences with the Regulatory Sequence Analysis
Tools (RSAT)1 (http://rsat.ulb.ac.be/rsat/) and biological networks
with the Network Analysis Tools (NeAT)2 (http://rsat.ulb.ac.be/
neat/). The first article3 presents a protocol to predict the location
of binding sites for transcription factors (TFs) whose specificity is
already known (pattern matching). In the present article, we
describe a protocol for the ab initio discovery of biological signals
in biological sequences (pattern discovery). The third article4 shows
how to write scripts to automate the analysis onmultiple clusters of
genes using Web services. The fourth5 describes a workflow for
deciphering biological networks by combining network compar-
ison, module identification and path finding.
Several bioinformatics approaches address the problem of motif

discovery from a set of input sequences. A typical application is to
predict TF-binding motifs by discovering over-represented motifs
in promoters of coregulated genes. Many TFs recognize a short
oligonucleotide (typically 5–10 bp), with a certain level of accepted
substitutions at some positions. Some dimeric TFs recognize dyads,
that is, pairs of short oligonucleotide (3–4 bp), separated by a
spacing of fixed width but variable content (e.g., CTAn{10}TGG).
The discovery of exceptional motifs in biological sequences can play
a crucial role in deciphering genome sequences and in interpreting
transcriptome data. Several criteria of exceptionality can be con-
sidered for selecting relevant motifs: higher/lower frequency than
expected by chance (over-/under-representation); concentration
at specific positions relative to some reference coordinate
(positional bias).
The protocol includes two typical applications of pattern dis-

covery in regulatory sequences: (i) detection of over-represented
oligonucleotides and dyads in promoters of coregulated genes
(single genome, multiple genes approach) and (ii) discovery of
evolutionarily conserved elements in promoters of orthologous
genes (single gene, multiple genomes approach).
For consistency, all examples were chosen in bacterial genomes,

but the same protocol gives good results with other genomes as

well, in particular with fungal genomes. The methods used in this
protocol were described in our previous publications6–9.

Pattern discovery algorithms
Various pattern discovery approaches have been proposed to detect
biological signals in nucleotide sequences. Some algorithms rely on
probabilistic descriptions of the motifs, namely position-specific
scoring matrices (PSSMs), and apply various optimization
methods to extract high-scoring motifs. The field was pioneered
by Stormo’s group, who transposed the concepts from Shannon’s
information theory to define the theoretical grounds for measuring
the conservation of each position of a TF binding10,11. The same
group developed a greedy algorithm named ‘consensus’ for dis-
covering putative TF-binding motifs in unaligned promoter
sequences12,13. Other machine-learning algorithms have later
been adapted to discover PSSM-based motifs in DNA sequences.
The program MEME is based on an expectation-maximization
algorithm14,15. The Gibbs sampling strategy has been applied to
discover motifs in protein sequences16,17 and later adapted to detect
putative TF-binding sites in promoters of coexpressed genes18–20.
More recent versions of the Gibbs sampling21,22 support back-
ground models based on Markov chains, which take into account
the higher order dependencies between adjacent residues in
biological sequences.
Another group of algorithms rely on a statistical analysis of

oligonucleotide (word) occurrences6,23–30. String-based representa-
tions of nucleotidic motifs rely either on the 4-letter alphabet (A, C,
G, T) or on a 15-letter alphabet (the IUPAC code) that permits to
describe partly degenerated positions30.
The detection of over-represented oligonucleotides is very

efficient for detecting various types of functional signals but fails
to detect a particular type of TF-binding site—namely the spaced
motifs (dyads)—typically recognized by dimeric TFs. Such motifs
are particularly important in bacteria because they correspond to
the major class of TFs, the helix-turn-helix proteins. In yeast, TFs
comprising a fungal zinc cluster domain also recognize spaced
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motifs. The program dyad-analysis was specifically developed to
detect this type of motifs7. It performs a systematic analysis of the
occurrences for spaced pairs of trinucleotides, with spacing
distances varying between 0 and 20. The estimation of dyad
over-representation is based on the same binomial statistics as
oligo-analysis.

Main advantages of oligonucleotide and dyad counting methods
! The statistics on oligonucleotide (word) occurrences are well

defined and provide an accurate estimate of the risk of false
positives. The significance score associated with predicted motifs
provides an indication about their reliability.

! Consequently, programs based on those statistics are able to
return a negative answer when one submits some sequences
without any specific motifs (negative controls). This is of
particular importance for the analysis of high-throughput data
because these methods sometimes return very noisy data, and
the subsequent analysis (normalization, clustering) may lead to
erroneous clusters.

! The search is exhaustive: all possible oligonucleotides or dyads
are analyzed, and the method is able to return all the significant
motifs in a single run.

! These methods can easily handle large sequence sets. Computing
time increases linearly with the sequence length. Whole genomes
can be treated within a few minutes.

! The statistical test applies not only to over-represented motifs
but also to under-represented motifs, thereby allowing to detect
motifs that have been counter-selected in some genome during
evolution. In contrast, matrix-based pattern discovery methods
are intrinsically unable to detect under-represented motifs.

Main limitations of oligonucleotide and dyads countingmethods
! The programs oligo-analysis and dyad-analysis are restricted to

motifs described with the 4-letter nucleotide alphabet (A, C, G,
T), plus the N character used for dyad spacing, without explicit
treatment of motif degeneracy. As will be shown, motif degen-
eracy can however be detected because the program can return
several oligonucleotides differing by one or a few substitutions.
Pattern assembly can then reveal the variable positions in the
motifs.

! The motifs are returned in the form of a list of oligonucleotides,
rather than as a PSSM3, which provides a more intuitive
description of the position-specific variability of the motif.
Lists of oligonucleotides can however be converted into PSSMs
in a second step.

Applications of pattern discovery to DNA sequences
In this protocol, we will combine several tools to discover motifs in
genome sequences. The flow chart shown in Figure 1 synthesizes
the interconnections between these tools. We will successively
present two study cases: (i) detection of over-represented oligo-
nucleotides and dyads in 98 promoters bound by the TF Spo0A of
Bacillus subtilis and (ii) detection of evolutionarily conserved
motifs in promoters of the orthologs of the purE gene.

Study case 1. Discovering cis-acting elements by detecting over-
represented oligonucleotides (option A) or dyads (option B) in
promoters of coregulated genes.

A classical application of pattern discovery is the detection of
cis-acting elements in promoters of a set of coregulated genes. This
application has become very popular since the advent of micro-
array-based expression profiling31. Various methods can be applied
to obtain clusters of coexpressed genes from a set of microarray
expression profiles32–34. The underlying hypothesis is that one or
several TFs act in a coordinated fashion on the coexpressed genes.
One would thus like to discover, in the promoters of the coex-
pressed genes, some motif that might reveal binding sites for the
putative TFs regulating these genes. One difficulty with this
approach is that there is not always a one-to-one correspondence
between coexpression and coregulation because a given TF might
have indirect effect on a large number of genes via the activation/
repression of secondary TFs. Coexpression clusters are typically
noisy and can be supposed to contain subsets of genes regulated by
different mechanisms.
More direct information on TF-binding regions can be obtained

from the more recent ChIP-chip technology, which combines
Chromatin Immuno-Precipitation (ChIP) with DNA microarrays
(chips). This method has for example been applied to a collection
of 102 TFs in the yeast Saccharomyces cerevisiae to detect their target
genes, first in a rich culture medium35 and in a second time in
various experimental conditions36. This ChIP-chip technology
provides better evidence about the direct link between a TF and
its target genes and permits to further characterize the impact of
environmental conditions on the binding specificity.
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Figure 1 | Flow chart of the tools used in this protocol.

1590 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL



The application of pattern discovery to promoters of coregulated
genes will be illustrated with a first study case.Molle et al. combined
ChIP-chip technology with microarray expression profiles to detect
genes regulated by the TF Spo0A, the main regulator of sporulation
in Bacillus subtilis37. Starting from the list of genes characterized by
these experiments, we will show how to use the program oligo-
analysis6 to discover the Spo0A-binding motif.
In order to illustrate the benefits of analyzing spaced motifs, we

will successively apply oligo-analysis (option A) and dyad-analysis
(option B) to detect over-represented motifs in the promoters of 98
FNR target genes annotated in RegulonDB38,39.

Study case 2: analyzing evolutionary conservation and diver-
gence between cis-acting elements. The ever-increasing pace of
genome sequencing opens a new perspective for the analysis of
regulatory sequences: detecting cis-acting elements based on their
conservation in the promoters of orthologous genes. The first
attempt in this direction was proposed by Wasserman and Fickett,
who compared large regions of human and mouse genomes, and
observed that some conserved fragments in noncoding regions
were enriched in TF-binding sites40. The conservation of regulatory
regions is likely to reflect the constraint to maintain gene regulation
during evolution. The underlying model is that mutations have
been counter-selected in the sites recognized by TFs, thereby
imposing a slower rate of divergence than in surrounding noncod-
ing sequences. Conserved elements found in noncoding fragments
are therefore called phylogenetic footprints.
The detection of phylogenetic footprints has been applied

successfully in bacteria41–43 and yeast44. We recently proposed a
method for detecting phylogenetic footprints in bacteria by detect-

ing over-represented dyads in the promoters of orthologous genes.
We performed a systematic evaluation of this method and defined
its optimal parametric conditions9. We also showed that the
detection of footprints at various taxonomical levels enables to
detect not only conservation but also divergence of cis-acting
elements during evolution.
This discovery of phylogenetic footprints will be illustrated with

our second study case: we will discover motifs in promoters of
orthologous genes of the gene purE in two distinct bacterial taxa
(Enterobacteriales and Bacillales, respectively).

Other applications of this protocol
In this protocol, we selected study cases from bacteria to
illustrate the behavior of the programs in well-controlled
conditions. In particular, footprint discovery has been well cali-
brated to return optimal results with bacteria9. The pattern
discovery tools presented here also give good results with fungal
genomes, as shown in our previous publications6–8,45–48. They were
also used to analyze promoters of other organisms, for example,
plants49 or drosophila50,51. In vertebrates, pattern discovery gives
much poorer results due to the dispersion of regulatory elements
over very large distances and to the heterogeneity of promoter
compositions.
Oligonucleotide-counting methods have also been used to detect

functional signals inwhole genomes. Although the protocol focuses
on the discovery of gene-specific TF-binding motifs, we will also
show a typical example of genome-wide pattern discovery
(ANTICIPATED RESULTS), where we predict restriction sites by
detecting under-represented motifs in the whole genomes of
Escherichia coli K12 and Bacillus subtilis, respectively.

MATERIALS
EQUIPMENT
.The only requirement to follow this protocol is a personal computer with
connection to Internet and a Web browser.
EQUIPMENT SETUP
.Sample data sets used for this protocol can be downloaded from the
supporting site on the RSAT Web server http://rsat.ulb.ac.be/rsat/data/
published_data/nature_protocols/pattern_discovery/

For the first study case (coregulated genes), two files are provided:
upstream sequences of Bacillus subtilis genes regulated by
Spo0A in the file Bacillus_subtilis_Spo0A_ChIP-chip_target_upseq.fasta
and upstream sequences of 98 FNR target genes of Escherichia
coli K12 in the file Escherichia_coli_K12_FNR_RegulonDB_target_
upseq.fasta.

PROCEDURE
Application 1: discovering cis-acting elements by detecting over-represented oligonucleotides and dyads in promoters of
coregulated genes
1| In your Web browser, open a connection to the RSAT Web server (http://rsat.ulb.ac.be/rsat/). Click on the Pattern
discovery title in the left menu. A sub-menu opens (Fig. 2).

2| Choose which type of motifs you would like to detect: oligonucleotides (option A) or dyads (option B).
(A) Discovering cis-acting elements by detecting over-represented oligonucleotides in promoters of coregulated genes

(i) Click on the link oligo-analysis to open the oligo-analysis form.
(ii) In the sequence section, copy/paste your sequences in the box. To upload sequences from a file, click on the browse

button and choose the appropriate file on the computer. For the study case discussed in this protocol, copy and paste
Bacillus subtilis sequences regulated by Spo0A that are provided in the file Bacillus_subtilis_Spo0A_ChIP-chip_target_
upseq.fasta (see EQUIPMENT SETUP).

(iii) In the section Oligomer counting mode, make sure that that Oligomer length is set to 6.
(B) Detecting over-represented dyads in promoters of coregulated genes

(i) Click on the link dyad-analysis to open the dyad-analysis form.
(ii) In the sequence section, copy/paste or upload your sequences. To illustrate the usefulness of dyad-analysis

for detecting spaced motifs, we will analyze the promoters of 98 FNR target genes of Escherichia coli K12
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(see EQUIPMENT SETUP). Copy the sequences provided in
Escherichia_coli_K12_FNR_RegulonDB_target_upseq.fasta
and paste them in the sequence box.

(iii) In the section Dyad counting mode, make sure that that
monad length is set to 3, Spacing from 0 to 20 and
Dyad type to any dyad.
! CAUTION The analysis of dyads takes more time than
that of single oligonucleotides. For the chosen para-
meters, the time should be B20 times longer than for
oligo-analysis.

3| The oligo-analysis and dyad-analysis forms contain a
large number of shared options, whose detailed description is
available in the online manual. The default parameters are
those that usually return interesting results with promoters.
We will just check below some of the most important options
and explain why they are critical.

4| Make sure that the option Purge sequences is checked.
m CRITICAL STEP Sequence purging is essential to discard
redundancy in the sequence set. See Box 1 for a detailed
explanation about sequence redundancy.

5| In the section Background model, the following options
should be selected: Genome subset, Sequence type upstream-
noorf. Select the Organism according to your input sequences
(depending on the study case, choose Bacillus subtilis or
Escherichia coli K12).
m CRITICAL STEP The choice of the background model is
one of the most crucial parameters for pattern discovery. An
inappropriate background model provokes noisy results that
can lead to erroneous interpretations. See Box 2 for a detailed
explanation about background models.
? TROUBLESHOOTING

6| In the section Return, make sure that the box
Binomial proba is checked and that the Lower Threshold on
Significance is 0.
m CRITICAL STEP The programs oligo-analysis and dyad-analysis
can compute various statistics to score the level of over-
representation of each oligonucleotide/dyad. The binomial
significance is the most appropriate under our working
conditions, as explained in Box 3.

7| Activate the option Convert assembled patterns to
Position-Specific Scoring Matrices.
! CAUTION This option will activate the program matrix-to-
patterns, which scans the input sequences to build PSSMs from
over-represented oligonucleotides. By default, this option is
not checked because the scanning phase can be time consum-
ing when large sequences are analyzed (several Mb) or when many motifs are detected. For the analysis of microbial regulons,
sequences are generally not too large, and it is thus useful to activate the conversion to PSSMs.

8| Leave other parameters unchanged and click GO.

9| After a few moments, the top of the result page appears. The primary result is a list of over-represented hexanucleotides or
dyads, each characterized by various attributes that contributed to estimate its significance (See Box 3). Below this list, the
section Pattern assembly indicates that several patterns (oligonucleotides or dyads) can be assembled to form a larger motif
(Fig. 3b).
? TROUBLESHOOTING
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Figure 2 | The Web interface of oligo-analysis is divided in five sections
separated by dashed lines. The section ‘Sequence’ allows the user to paste or
upload DNA sequences in various standard formats. The second section
specifies the counting mode for oligonucleotides (length, strands, etc.). The
third section presents a choice of background models (see Box 2). The section
‘Result’ permits the user to select the output fields, and to specify thresholds
on various statistics. The section ‘Output’ allows the user to display the
results directly in the Web browser or to store them on the server and send a
notice by email when the analysis is finished.

1592 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL



10| A few moments later, the lower part of the result page displays two types of PSSMs. Significance matrices directly reflect
the assembly of over-represented oligonucleotides, whereas Count matrices are obtained in a second phase, by scanning the
input sequences with the significance matrices.

11| At the bottom of the result page, in the Next step box, click on the button string-based pattern matching (dna-pattern).
The dna-pattern form is displayed, where all parameters have been automatically filled in to detect the occurrences of the
patterns discovered in the previous step. Leave all parameters unchanged and click GO.

12| The program dna-pattern returns a list of features indicating the positions of the oligonucleotides/dyads and the limits
of the input sequences. We do not actually want to analyze these instances as they are presented in the table but rather to
visualize them graphically. At the bottom of the dna-pattern result page, click on the feature map button to open the
feature-map form.

13| The feature map form presents a variety of display options. A good approach is to generate a first figure with the
default options, and then to come back to the form in order to refine the display according to your needs. Leave all options
unchanged and click GO. The interpretation of the oligonucleotides, their assembly and the feature map will be discussed below
(see ANTICIPATED RESULTS).

Application 2: analyzing evolutionary conservation and divergence between cis-acting elements
14| In the previous steps, we analyzed the promoters of coregulated genes in a single genome. We will now take the
orthogonal approach: starting from a single gene, we will detect motifs in the promoters of orthologous genes. For this, we will
use the program footprint-discovery, which is actually an automatic workflow combining several RSAT tools (Fig. 1). Open a new
window in your Web browser, and open a connection to the RSAT Web site (http://rsat.ulb.ac.be/rsat/). In the left panel,
expand the Pattern discovery triangle and click on the link footprint-discovery.

15| At the top of the footprint-discovery form, select the Organism. This is the organism to which your query gene(s) belong
(for the study case, select Bacillus subtilis).

16| In the box Query genes, enter one or several gene names (for the study case, type purE). If you want to enter multiple
gene names, each one should come as the first word of a new line.
! CAUTION When several genes are entered, the program collects promoters of orthologs for all the query genes and submits
them altogether to the pattern discovery tools. If you want to analyze several genes separately, you need to run several
separate queries.
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BOX 1 | PURGING SEQUENCES
Redundant sequences are harmful to pattern discovery because they violate the statistical hypothesis of independence that is essential to the
binomial statistics (see Box 3).
Sources of sequence redundancy
Redundancy in a sequence set can originate from different sources:
1. Repetitive elements. This is especially critical in vertebrates, where a considerable fraction of the genome is made of repetitive elements.
2. Recent duplications. The duplication of a genome segment generates two identical sequences. Recently duplicated genes generally ensure
the same function and are regulated in the same way, until one of the two copies diverges. It is thus logical to find pairs of recently duplicated
genes in sets of coregulated genes.
3. Promoters of divergently transcribed neighbor genes. Neighbor genes transcribed in divergent directions share the same promoter
sequence. In some cases (but not always), both are regulated by cis-acting elements located in their intergenic region. It is thus common to find
pairs of neighbor genes in sets of coregulated genes.
4. Promoters of orthologous genes from very close species. When analyzing promoters of orthologous genes, the input data may contain
several almost identical sequences, obtained from closely related organisms (e.g., ten different strains of the species Escherichia coli). This will
create a strong redundancy in the input set, which may completely bias the statistical analysis if it is not treated in an appropriate way.

Treatment of sequence redundancy
In order to avoid the problems of redundancy, we recommend masking redundant segments in the input sequences before counting
oligonucleotides or dyads. In the Regulatory Sequence Analysis Tools suite, the masking of redundant elements is ensured by the program
REPuter57,58, which replaces repetitive segments by N. By default, we mask all segments of 30 bp that are identical to some other segment of the
input data set. Note that the problem of redundancy only concerns the statistical test used for pattern discovery. For pattern matching and
feature-map drawing, we generally want to detect all the instances of the patterns. By default, the server masks the repeats for pattern discovery
and uses the unmasked sequences for pattern matching.
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BOX 2 | BACKGROUND MODEL
The choice of a background model is one of the most crucial parameters for pattern discovery. The background model is used to estimate
the oligonucleotide or dyad frequencies that would be expected in a sequence devoid of any specific biological signal (a ‘neutral’ sequence).
The background model can be estimated either from a reference sequence set (background sequences) or from the input sequence itself.

The background model can be estimated from some reference set when the input sequences (the query) are a subset of a larger collection (the
reference)6. For example, for sets of coregulated genes, expected frequencies are estimated by taking the oligonucleotide frequencies measured
in the whole collection of promoters of the selected organism. The Regulatory Sequence Analysis Tools contain predefined background models
for oligonucleotides and dyads, with different counting modes (single or both strands, with or without overlapping occurrences), and for each
supported organism (currently, 4600 species). The Web site also supports taxon-wide background models, which are built by counting
oligonucleotide or dyad frequencies in all promoters of all genes of all organisms belonging to a given taxon. Taxon-wide background models are
used for the analysis of phylogenetic footprints (i.e., elements conserved in the noncoding regions surrounding a set of orthologous genes).

In some cases, the analysis is performed on sequences for which the concept of external reference set does not apply. This is, for example, the
case when analyzing a whole genome or the set of all 3¢-untranslated regions for a given organism8. In such case, expected frequencies can be
estimated from the input sequences themselves (the frequency of a given oligonucleotide or dyad is estimated on the basis of frequencies of the
shorter oligonucleotides it is composed of). The simplest type of input-based estimation is a Bernoulli model, where the expected frequency of
an oligonucleotide is the product of residue frequencies measured in the input sequence set. For example, if the input sequences contain 33% A,
30% T, 18% G and 19% C, the expected frequency of GATCGG is

PðGATCGGÞ ¼ PðAÞ % PðTÞ % PðGÞ3 % PðCÞ ¼ 0:33 % 0:30 % 0:183 % 0:19 ¼ 0:0001097;

whereas the expected frequency of TATAAA is

PðTATAAAÞ ¼ PðAÞ4 % PðTÞ2 ¼ 0:334 % 0:302 ¼ 0:001067:

Note that there is an order of magnitude between the expected frequencies of these two particular oligonucleotides. This shows how important
it is to use a relevant method to estimate background probabilities.

Bernoulli models are simple to estimate but rely on an assumption of independence between successive nucleotides, which generally does not
hold for biological sequences. For example, it is well known that yeast noncoding sequences contain a higher frequency of poly-AT
oligonucleotides than expected from a Bernoulli model. Another well-documented case of dependency between successive residues is the
avoidance of CpG dinucleotides in vertebrate sequences (this avoidance is released in CpG islands). Dependencies between successive residues
can be represented using Markov models, where the expected frequency of an oligonucleotide is estimated on the basis of its composition in
shorter oligonucleotides8. For a detailed description of Markov models for biological sequence, see ref. 59. Markov models are appropriate for the
analysis of whole genomes (Box 4) because, in this case, there is no sequence set that could be considered as ‘reference’ for the random
expectation. The order of the Markov model is a delicate choice, which depends on the size of motifs (oligonucleotides) and of the input
sequence set. Higher-order models show a better fit to the data, but they require larger training sets to avoid overfitting.

For the analysis of spaced motifs, the program dyad-analysis supports an alternative model, called ‘monad’, where the expected frequency of a
dyad is estimated by taking the product of frequencies of its monads (trinucleotides) in the input sequences7. For example, PðCTAn10TAGÞ ¼
FðCTAÞ % FðTAGÞ:

BOX 3 | SCORING STATISTICS
Various statistics have been proposed to compare observed and expected frequencies (reviewed in ref. 60): observed/expected ratio61,
z-score62, binomial6, Poisson and compound Poisson63.
The programs used in this protocol (oligo-analysis and dyad-analysis) rely on the binomial distribution6. For a given oligonucleotide of size k, a
sequence of length L is considered a succession of N ¼ L & k + 1 trials, corresponding to each position where a k-mer can be found. Each trial
results in either a success (an occurrence of the considered oligonucleotide starts at that position) or a failure (no occurrence). The probability
to observe at least s successes by chance is given by the inverse cumulative binomial distribution.

PðX ¼ sÞ ¼ CsNp
sð1 & pÞN&s ¼ N!

s!ðN & sÞ!
psð1 & pÞN& s

PðX ' sÞ ¼
XN

i¼ s

PðX ¼ iÞ

This probability, also called nominal P-value, indicates the risk for a given oligonucleotide to be considered as significant when it is not.
In other terms, this is the risk of false positive for one given oligonucleotide.
Because the same statistical test is applied to all possible oligonucleotides, we perform a correction for multitesting by multiplying the nominal
P-value by the number of oligonucleotides tested to obtain an E-value (expected value). The E-value represents the number of false positives
expected by chance at a given level of P-value. The significance score is a minus log transformation of this E-value.

Eval ¼ D % Pval
sig ¼ &log10ðEvalÞ
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17| Select the Taxon in which ortho-
logs will be collected. For this study
case, select Bacillales.
m CRITICAL STEP The choice of the
taxonomical level is one of the most
important parameters for the detection of
phylogenetic footprints. A too-narrow
taxonomical level (e.g., a genus) will
contain almost identical sequences, so
that the signal will not emerge from the
general conservation. If the taxonomical
level is too broad (e.g., a whole king-
dom), it will encompass genes whose
regulation has diverged, so that all the
regulatory signals will not be conserved
enough to be detected. On the basis of
our evaluation9, we recommend to start
the analysis at the level of the order (e.g.,
Enterobacteriales, Bacillales) or the class
(e.g., Gammaproteobacteria).

18| Make sure that the option predict
operon leader genes is not activated.
m CRITICAL STEP Bacterial genes are
organized in operons (a single transcrip-
tion unit can include multiple coding
sequences). Thus, the signals involved in
the regulation of a given gene are not
always in the sequence immediately
upstream of this gene. With the option
predict operon leader genes, the program
will infer operons and collect promoters
upstream of the operon leader genes
instead of those found immediately
upstream of each orthologous gene.
Operon prediction however involves one
additional predictive step, which includes
a certain rate of errors. A pragmatic
approach is to perform a first analysis
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Figure 3 | Example of pattern discovery in
promoters bound by the transcription factor Spo0A
from Bacillus subtilis. (a) The header of the oligo-
analysis indicates the parameters used for the
analysis. The oligonucleotide table shows the
significant oligonucleotides detected in the set of
promoters, and their assembly (below the table)
indicates that these oligonucleotides reveal
different fragments of a larger pattern
ttGTCGAAt. (b) Significance matrices obtained
from the assembled oligonucleotides. (c) Count
matrices obtained by scanning input sequences
with the significance matrices. (d) Feature
map of the significant oligonucleotides.
Note that the precise values of the oligo-analysis
results can slightly vary with successive
versions of the genome stored at NCBI
(see Supplementary Fig. 1 online for the full
version of this figure).
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without operon inference and, in case most promoters would seem very short (and your orthologs would thus probably be located
inside operons), redo the analysis with operon inference.

19| Specify the dyad filtering option according to your needs.
m CRITICAL STEP When the option dyad filtering is checked, the analysis is restricted to the dyads found with at least one
occurrence in the promoter of the query gene of the selected organism. This is very useful if your analysis aims at studying the
regulation of this particular organism. On the contrary, if you want to analyze the divergence of the regulatory motifs between
different branches of a large taxonomical groups (e.g., different classes of bacteria), you should carefully avoid dyad filtering
because it would only return the motifs found in the promoter of the ‘seed’ organism and thereby prevent you from detecting
divergent motifs found in more distant organisms. For the study case, we deactivated dyad filtering to discover motifs for different
taxa (Bacillales, Enterobacteriales), irrespective of the organism that was considered as ‘seed’ for this taxon (Escherichia coli K12,
Bacillus subtilis, respectively).

20| Make sure that the option background model is set to taxfreq.
m CRITICAL STEP Our evaluation9 showed that the ‘taxfreq’ model generally gives significantly better results than the ‘monad’
model.

21| In the Return fields box, check the threshold values. In standard conditions, the Lower threshold on Significance should
be set to 0 (to select significant motifs only) and the Upper threshold on Rank to 50 (this will restrict the result to the 50 top-
ranking dyads). Optionally, you can adapt these threshold parameters to increase or reduce the stringency of the analysis.

22| Fill in the email box. For this program, the only output format is by email notification because the detection of footprints
combines several operations that can sum up to several minutes, depending on the load of the server and the number of species
in the taxon.

23| Leave all other parameters unchanged and click GO.

24| After a few minutes, you should receive an email indicating the URL of the result. The result page is a short report about
the analysis, with links to separate files corresponding to the different steps of the process (collection of orthologs, promoter
sequences, significant dyads, assembled dyads, feature map).

25| To analyze the divergence between regulatory elements, perform all the operations above, starting from Step 17, but with a
different organism and taxon (for the study case, try the organism Escherichia coli K12 with the taxon Enterobacteriales). The
results will be discussed in the ANTICIPATED RESULTS.

! TIMING
The timing properties were tested on a Macintosh MacBook Pro equipped with a 2.16 GHz Core Duo and 2 Gb RAM. The typical
time requirement for the tasks described in this protocol is indicated in Table 1.
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TABLE 1 | Computation time for typical tasks presented in this protocol.

Task Algorithm Conditions
Sequence
size (kb) Time

Over-represented oligonucleotides in
promoters of coregulated genes

Oligo-analysis Bacillus subtilis, 49 Spo0A
target genes

10 1 s

Over-represented oligonucleotides in
promoters of coregulated genes

Oligo-analysis Escherichia coli K12, 99 FNR
target genes

27 1 s

Over-represented dyads in promoters of
coregulated genes

Dyad-analysis Escherichia coli K12, 99 FNR
target genes

27 29 s

Detection of conserved motifs in promoters
of orthologous genes

Footprint-discovery (all steps from
orthologs identification to
feature-map drawing)

Bacillales, 38 orthologs of
Bacillus subtilis purE

10 3 min 20 s

Genome-scale detection of restriction sites Oligo-analysis Mycoplasma genitalium whole
genome

580 14 s

Genome-scale detection of restriction sites Oligo-analysis Bacillus subtilis whole genome 4,214 1 min 38 s
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? TROUBLESHOOTING
Troubleshooting advice can be found in Table 2.

ANTICIPATED RESULTS
Application 1 option A: detection of over-represented oligonucleotides in promoters of coregulated genes
The oligo-analysis result file starts with a header indicating the parameters of the analysis, followed by a list of oligonucleotides
sorted by significance (Fig. 3a). In the promoters of the Spo0A target genes, four pairs of hexanucleotides were significantly
over-represented among the 2,080 possible pairs of reverse complements. The top-ranking oligonucleotide, GTCGAA, is found
20 times in the input set, whereas 2.89 occurrences would be expected by chance. The P-value (occ_P ¼ 4.3 ( 10&11) indicates
the probability to observe at least 20 occurrences when 2.89 are expected. The corresponding expected number of false
positives is very low (occ_E ¼ 8.9 ( 10&8), indicating that such a level of over-representation is very unlikely to result from
chance. In this case, the most obvious explanation is that the over-representation of this motif reflects the fact that it is bound
by the Spo0A TF.

The Pattern assembly section of the result page (Fig. 3a) shows that the four significant hexanucleotides can be assembled
to form a single motif: TTGTCGAAT (the second column of the assembly shows the reverse complement ATTCGACAA). This 9-mer
corresponds to the experimentally characterized consensus of the Bacillus subtilis TF Spo0A37,52,53. The top-ranking
hexanucleotide (GTCGAA) corresponds to the most conserved part of the annotated motif (tttGTCGAAaaa).

For this study case, we activated the option to convert assembled patterns into PSSMs. This is performed in two steps. First,
a significance matrix is built from assembled oligonucleotides (Fig. 3b). The numbers in this matrix indicate the highest
significance obtained for each residue (row) at each position of the assembly (column). Second, the input sequences are
scanned with the significance matrices to collect all sites with P-value below a given threshold (see accompanying article3),
and a count matrix is built with those sites (Fig. 3c). The count matrix better reflects position-specific variability of the motif.
For the Spo0A motif, we can see that its center (that corresponds to the most significant hexanucleotide) is highly conserved in
the matrix, whereas its flanks are partly degenerated. The count matrix can be used to scan new sequences for putative
instances of the discovered motif.

The feature map (Fig. 3d, Supplementary Fig. 1 online) shows the matching positions of the significant patterns. Each box
represents one hexanucleotide, with a height proportional to the binomial significance. There is a strikingly high frequency of
overlap between boxes, indicating that the significant hexanucleotides reveal overlapping fragments of the same motif. The pre-
sence of such clumps of mutually overlapping hexanucleotides is usually a good indication for the relevance of the discovered
oligonucleotides, and they generally reveal putative binding sites for the TF of interest. The feature map thus helps to refine the
interpretation of the discovered motifs and to suggest candidate sites for further experimental validation.
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TABLE 2 | Troubleshooting table.

Step Problem Possible reason Solution

5 The organism to which your sequences
belong does not appear in the pop-up
menu Organism

This organism is not (yet) supported on
Regulatory Sequence Analysis Tools

If your input sequence is large enough,
you can use it to estimate the back-
ground model with a Markov chain

Alternatively, you can estimate a
background model from a separate set of
sequences from your organism
(reference set), as explained in the
oligo-analysis manual

9 The program oligo-analysis returns too
many patterns (e.g., several dozens of
patterns)

The background model was not
appropriate

Check that the organism and background
model sequence type correspond to your
input sequences

The program dyad-analysis does not
return any result after a few minutes

This may happen for large sequences
because the analysis of all dyads costs
more time than the analysis of single
oligonucleotides

Use the email output
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seq
a

b

c

identifier exp_freq occ exp_occ occ_P occ_E occ_sig rank ovl_occ forbocc

aatttg aatttg|caaatt 0.0010822094884 53 28.54 2.7e-05 5.6e-02 1.25 1 2 265

atcaat atcaat|attgat 0.0011703765749 56 30.87 3e-05 6.3e-02 1.20 2 2 280

atcaaa atcaaa|tttgat 0.0010398892870 50 27.43 6.8e-05 1.4e-01 0.85 3 0 250

acaaat acaaat|atttgt 0.0011368730820 53 29.99 9.1e-05 1.9e-01 0.72 4 0 265

atttga atttga|tcaaat 0.0008371049881 42 22.08 0.00010 2.1e-01 0.67 5 0 210

caaatc caaatc|gatttg 0.0006819309161 35 17.99 0.00024 5.0e-01 0.30 6 0 175

 Job started 2008_06_27.113840
; Job done    2008_06_27.113842

Pattern assembly

; pattern-assembly  -v 1 -subst 1 -top 50 -2str -i public_html/tmp/oligo-analysis.2008_06_27.113833.res -o public_html/tmp/oligo-analysis.2
; Input file public_html/tmp/oligo-analysis.2008_06_27.113833.res
; Output file public_html/tmp/oligo-analysis.2008_06_27.113833.asmb
; Input score column           8
; Output score column          0
; two strand assembly
; max flanking bases           1
; max substitutions            1
; max assembly size            50
; top number of patterns       100
; number of input patterns     6
;

;assembly # 1 seed: aatttg 4 words length 
;alignt rev_cpl score
aatttg. .caaatt 1.25
gatttg. .caaatc 0.30
.atttgt acaaat. 0.72
.atttga tcaaat. 0.67
aatttgt acaaatt 1.25 best consensus

;assembly # 2 seed: atcaat 2 words length 7
;alignt rev_cpl score
atcaat attgat 1.20
atcaaa tttgat 0.85
atcaat attgat 1.20 best consensus
;Job started 27/06/08 11:38:44 CEST
;Job done    27/06/08 11:38:45 CEST

sequence identifier expected_freq occ exp_occ occ_P occ_E occ_sig rank ovl_occ all_occ ov_coef remark

tgan{6}tca tgan{6}tca|tgan{6}tca 0.0007406876899 57 18.73 1.9e-12 8.5e-08 7.07 1 0 57 1.0000 inv_rep

tgan{7}caa tgan{7}caa|ttgn{7}tca 0.0008679483941 57 21.84 5.9e-10 2.6e-05 4.59 2 14 71 1.0000

gatn{5}tca gatn{5}tca|tgan{5}atc 0.0009443576965 56 23.99 3.2e-08 1.4e-03 2.85 3 24 80 1.0000

gatn{6}caa gatn{6}caa|ttgn{6}atc 0.0007293794809 46 18.44 8.6e-08 3.7e-03 2.43 4 7 53 1.0000

ttgn{8}caa ttgn{8}caa|ttgn{8}caa 0.0004150917410 29 10.40 2.5e-06 1.1e-01 0.97 5 0 29 1.0000 inv_rep

gatn{4}atc gatn{4}atc|gatn{4}atc 0.0004227240113 29 10.81 4.6e-06 2.0e-01 0.70 6 0 29 1.0000 inv_rep

attn{5}tac attn{5}tac|gtan{5}aat 0.0007480060962 42 19.00 5.6e-06 2.5e-01 0.61 7 0 42 1.0000

tgtn{5}aaa tgtn{5}aaa|tttn{5}aca 0.0014380417200 67 36.53 7.1e-06 3.1e-01 0.51 8 0 67 1.0000

atcn{1}aat atcn{1}aat|attn{1}gat 0.0005662350255 34 14.71 1.5e-05 6.4e-01 0.19 9 1 35 1.0039

Job started 27/06/08 11:43:22 CEST
;Job done    27/06/08 11:43:53 CEST

Pattern assembly

; pattern-assembly  -v 1 -subst 0 -top 50 -2str -i public_html/tmp/dyad-analysis.2008_06_27.114314.res -o public_html/tmp/dyad-analysis.200
; Input file public_html/tmp/dyad-analysis.2008_06_27.114314.res
; Output file public_html/tmp/dyad-analysis.2008_06_27.114314.asmb
; Input score column           8
; Output score column          0
; two strand assembly
; max flanking bases           1
; max substitutions            0
; max assembly size            50
; top number of patterns       100
; number of input patterns     9
;

;assembly # 1 seed: tgannnnnntca 9 words length 
;       alignt        rev_cpl score
ttgnnnnnnntca. .tgannnnnnncaa 4.59
ttgnnnnnnatc.. ..gatnnnnnncaa 2.43
ttgnnnnnnnncaa ttgnnnnnnnncaa 0.97
.tgannnnnntca. .tgannnnnntca. 7.07
.tgannnnnnncaa ttgnnnnnnntca. 4.59
.tgannnnnatc.. ..gatnnnnntca. 2.85
..gatnnnnntca. .tgannnnnatc.. 2.85
..gatnnnnnncaa ttgnnnnnnatc.. 2.43
..gatnnnnatc.. ..gatnnnnatc.. 0.70
ttgatnnnnatcaa ttgatnnnnatcaa 7.07 best consensus

; Isolated patterns: 3
;alignt rev_cpl score
attnnnnntac gtannnnnaat 0.61 isol
tgtnnnnnaaa tttnnnnnaca 0.51 isol
atcnaat attngat 0.19 isol
;Job started 27/06/08 11:43:56 CEST
;Job done    27/06/08 11:43:56 CEST
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Figure 4 | Comparison between oligo-analysis and dyad-analysis for the FNR regulon. (a) Significant oligonucleotides and (b) dyads detected in promoters of the
FNR regulon. (c) FNR-binding motif annotated in RegulonDB.
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Figure 5 | Example of pattern discovery in promoters of orthologous genes. (a,b) Sequence logo of binding motifs annotated for the transcription factor PurR in
(a) Escherichia coli and (b) Bacillus subtilis, respectively. Notice the divergence between the two motifs. (c,d) Feature maps of the significant dyads detected in
purE promoters of (c) Enterobacteriales and (d) Bacillales, respectively (See Supplementary Fig. 1 online for the full version of Fig. 5c).
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Another observation is that several sequences are devoid of predicted binding sites. Some of these site-less sequences are
very short (spoIIAB, dltB, dltC, etc.) and correspond to intergenic sequences located inside operons. Some larger promoters,
however, also lack the Spo0A-binding motif, suggesting that they may either contain variants of that motif or not be directly
regulated by Spo0A.

The results obtained with the Spo0A regulon are particularly clean, in that all the significant oligonucleotides correspond to
segments of the known motif. The situation is unfortunately not always so clear cut, as will be discussed in the next section.

Application 1 option B: detection of over-represented dyads in promoters of coregulated genes
With the FNR regulon, we tested both options 1A and B of this protocol for the sake of comparison between oligo-analysis and
dyad-analysis. oligo-analysis returns seven significant hexanucleotides (Fig. 4a), which can be assembled to form a partly
degenerated motif: A[T/A]CAA[T/A]T[T/C]. This motif corresponds to the half-site of the FNR-binding motif annotated in
RegulonDB (Fig. 4c). The most significant hexanucleotide (AATTTG) has a relatively weak significance (sig ¼ 1.25; E-value ¼
0.06). In contrast, the analysis of dyads reveals a highly significant spaced motif (Fig. 4b). The most significant dyad,
TGAn{6}TCA (sig ¼ 7.07, E-value ¼ 8.5 ( 10&8), corresponds to the core of the annotated FNR-binding motif (Fig. 4c).
This dyad can be assembled with several other ones to form a complete description of the spaced motif bound by FNR:
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TABLE 3 | Motifs found by assembling the most significant dyads detected in purE promoters
of Enterobacteriales and Bacillales, respectively.

Enterobacteriales
;assembly # 1 seed: acgnnnncgt 11

words
Length

; alignt rev_cpl score
aacnnnnncgt. .acgnnnnngtt 7.30
aacnnnngcg.. ..cgcnnnngtt 7.27
aacnnntgc... ...gcannngtt 7.18
.acgnnnncgt. .acgnnnncgt. 13.58
.acgnntgc... ...gcanncgt. 11.04
.acgnnngcg.. ..cgcnnncgt. 10.19
.acgnnnnngtt aacnnnnncgt. 7.30
..cgcnnncgt. .acgnnngcg.. 10.19
..cgcnnnngtt Aacnnnngcg.. 7.27
...gcanncgt. .acgnntgc... 11.04
...gcannngtt aacnnntgc... 7.18

aacgcatgcgtt aacgcatgcgtt 13.58 best
consensus

Bacillales
;assembly # 1 seed: aaanncga 15

words
length

; alignt rev_cpl score
taannntcg....... .......cgannntta 4.31
.aaannncga...... ......tcgnnnttt. 2.88
.aaannnngaa..... .....ttcnnnnttt. 1.22
..aaanncga...... ......tcgnnttt.. 6.92
..aaannngaa..... .....ttcnnnttt.. 1.99
...aacnnnaac.... ....gttnnngtt... 4.89
...aacncga...... ......tcgngtt... 2.92
...aacnngaa..... .....ttcnngtt... 1.70
......tcgaac.... ....gttcga...... 3.80
.......cgaaca... ...tgttcg....... 4.51
.......cgannntta taannntcg....... 4.31
.......cgancat.. ..atgntcg....... 2.67
.......cgannatt. .aatnntcg....... 1.61
........gaacat.. ..atgttc........ 2.05
.........aacntta taangtt......... 2.48

taaaactcgaacatta taatgttcgagtttta 6.92 best
consensus

TABLE 4 | Restriction enzymes and their
sites, as annotated in REBASE55,56.

Escherichia coli restriction enzymes and sites*
CfrI YGGCCR
Eco105I TACGTA
M.Eco248534P GTCGAC
Eco75KI GRGCYC
Eco168I GGYRCC
Eco101I GGTCTC
Eco149I GGTACC
EciEI GGGCCC
NarI GGCGCC
Eco143I GCGCGC
NaeI GCCGGC
Eco17I GATATC
EcoICRI GAGCTC
Eco159I GAATTC
Eco27kI CYCGRG
Eco161I CTGCAG
EcoE24377ORF3323P CTGATG
Eco112I CTGAAG
Eco52I CGGCCG
M.EcoKO157ORF1953P CGATCG
Eco130I CCWWGG
Eco29kI CCGCGG
M.EcoAPECORFBP CAGCTG
M.EcoP15I CAGCAG
Eco72I CACGTG
M.Eco536ORF3355P ATGCAT
Eco255I AGTACT
Eco1524I AGGCCT
Eco47III AGCGCT
EcoVIII AAGCTT

Bacillus subtilis restriction enzymes and sites**
BspMII TCCGGA
HgiJII GRGCYC
BamH1 GGATCC
PstI CTGCAG
XhoI CTCGAG
ClaI ATCGAT

*Hexanucleotidic restriction sites in Escherichia coli K12. Note that
only one enzyme is shown per site, here, whereas some sites are
recognized by several enzymes. **Enzymes from Bacillus subtilis.
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TTGATn{4}ATCAA (see the pattern assembly result on Fig. 4b). This example illustrates the interest of analyzing spaced motifs,
which are especially important for bacterial and fungal regulation.

Application 2: evolutionary conservation and divergence between cis-acting elements
Table 3 displays the most significant motifs discovered with dyad-analysis in purE promoters of Enterobacteriales and Bacillales,
respectively. The most significant dyads detected in Enterobacteriales can be assembled to form the motif AACGcaTGCGTt
(Table 3, Enterobacteriales), which shows a good correspondence with the consensus of the PurR TF annotated for Escherichia
coli in RegulonDB38,39: gaaAACGttTGCGT (Fig. 5a). The two differing residues in the middle of the motif might reflect
differences between intra-species variability (PurR-binding sites in different genes of E. coli) and inter-species variability
(evolutionary changes within the binding sites of a single gene, purE). The dyads detected in promoters of Bacillales form the
pattern taAAActCGAACATTa (Table 3, Bacillales), corresponding to the binding motif of the Bacillus subtilis PurR protein
annotated in DBTBS54: AAAnnCGAA[CT][AG][AT][TA][AT] (Fig. 5b). The feature maps further reveal that the instances
of the significant dyads occupy conserved positions in the purE promoters of Enterobacteriales (Fig. 5c and Supplementary
Fig. 2 online), whereas in Bacillales (Fig. 5d), binding site positions differ between the genera Bacillus and Staphylococcus.
The detection of phylogenetic footprints thus reveals the conservation of the binding sites within each taxon and their
divergence between two very distant taxa.
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BOX 4 | DISCOVERING FUNCTIONAL SIGNALS BY GENOME-WIDE DETECTION OF
EXCEPTIONAL OLIGONUCLEOTIDES
Oligonucleotide-counting methods can be used to detect exceptional motifs in whole genomes. The term ‘exceptional’ is taken here in the sense
of either over-represented or under-represented (for a didactic presentation on the detection of exceptional motifs, see refs. 59,60). The
detection of over-represented oligonucleotides can reveal genome-specific signals such as the CHI motif23,64. In contrast, under-represented
oligonucleotides can reveal some signals that are avoided in genomes because they would be harmful for the organism. This is, for example, the
case of restriction sites, where restriction enzymes specifically bind to cleave DNA65.

As an example, we show the result of a genome-wide analysis of under-represented hexanucleotides in the whole genomes of the bacteria
Escherichia coli K12 and Bacillus subtilis, respectively. The full genome sequences are provided on the supporting Web site, and the analysis can
be reproduced by setting the following parameters in the oligo-analysis form:
! oligonucleotide size ¼ 6
! Background model ¼ Markov, order 4
! pseudo-weight ¼ 0
! Binomial proba -4 under-represented
! Lower threshold on Significance ¼ none
! Output -4 email
The most significant predicted motifs can then be compared with the sites recognized by the restriction enzymes of these organisms.

For the analysis of the whole genome of Escherichia coli K12, the result file contains all the possible hexanucleotides grouped by pairs of
reverse complement. The top-ranking hexanucleotides (i.e., the most significantly under-represented) are displayed in Figure 6a. The most
significantly under-represented hexanucleotide is GGCGCC, which corresponds to the binding site of the restriction enzyme NarI (Table 4,
Escherichia coli restriction enzymes and sites). The whole genome of Escherichia coli contains no more than 82 occurrences of this hexamer,
whereas 1,965 occurrences would be expected by chance, according to the selected background model (Markov model of order 4). The P-value
(probability to observe such a low number of occurrences by chance) is below the computation limits of the program (P-valueo 1 ( 10&300)
and is thus rounded to 0. Similarly, the site GCCGGC, found in 258 occurrences, whereas 1,609 are expected, corresponds to the restriction site
for NaeI. The next most significantly under-represented word, AAAAAA, is not related to restriction enzymes. This word is quite frequent (4,896)
but much less than expected by chance (7,382 occurrences). Most of the next significant hexanucleotides are palindromes and correspond to
well-characterized restrictions sites of E. coli (Table 4, Escherichia coli restriction enzymes and sites), as annotated in the REBASE database55,56.

For B. subtilis (Fig. 6b), the most significantly under-represented hexanucleotides contain some AT-rich hexanucleotides (AAAAAA, CTTTTC),
together with the sites recognized by the restriction enzymes (Table 4, Bacillus subtilis restriction enzymes and sites), such as BamHI (GGATCC,
sig ¼ 61.11), PstI (CTGCAG, sig ¼ 12.50) and ClaI (ATCGAT, sig ¼ 4.13). Some other B. subtilis restriction sites are only weakly under-
represented, for example XhoI (CTGCAG, sig¼ 1.29). The BspMII site (TCCGGA) is found in 1,189 occurrences and expected in 1,266 occurrences
(not shown on Fig. 6b). Despite being less frequent than expected, this site cannot be considered significant because this level of under-
representation corresponds to a negative significance (sig ¼ &1.77), indicating an E-value superior to 1 (Eval ¼ 59).

In summary, the genome-wide detection of under-represented hexanucleotides allows the user to detect highly significant genome-specific
signals, some of which correspond to well-characterized restriction enzymes of the two model organisms analyzed here (E. coli and B. subtilis).
This approach thus provides a powerful way to investigate newly sequenced bacterial genomes to discover organism-specific restriction sites
and other biological signals.
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Genome-scale detection of rare oligonucleotides
An additional example of application is discussed in Box 4 (Table 4, Fig. 6), where we show how to discover restriction sites by
detecting under-represented motifs in an entire genome.

Note: Supplementary information is available via the HTML version of this article.
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 column headers
1 seq            

a b
oligomer sequence

2 identifier     oligomer identifier
3 exp_freq       expected relative frequency
4 occ            observed occurrences
5 exp_occ        expected occurrences
6 occ_P          occurrence probability (binomial)
7 occ_E          E-value for occurrences (binomial)
8 occ_sig        occurrence significance (binomial)
9 rank           rank
10 ovl_occ        number of overlapping occurrences (discarded from the count)
11 forbocc        forbidden positions (to avoid self-overlap)

seq identifier exp_freq occ exp_occ occ_P occ_E occ_sig rank ovl_occ forbocc

gccggc gccggc|gccggc 0.0003573055893 258 1609.16 0 0e+00 999.00 1 0 2580

ggcgcc ggcgcc|ggcgcc 0.0004256374408 82 1916.90 0 0e+00 999.00 2 0 820

aaaaaa aaaaaa|tttttt 0.0016390737298 4896 7381.71 3e-209 1e-205 204.96 3 1396 24480

agcgct agcgct|agcgct 0.0003745187858 752 1686.68 2e-144 8e-141 140.12 4 0 7520

ctgcag ctgcag|ctgcag 0.0004276601823 925 1926.01 2e-142 7e-139 138.14 5 0 9250

cggccg cggccg|cggccg 0.0001752831094 250 789.40 1e-111 6e-108 107.25 6 0 2500

ccgcgg ccgcgg|ccgcgg 0.0002911010722 634 1311.00 3e-96 1.2e-92 91.91 7 0 6340

gagacc gagacc|ggtctc 0.0001559202114 235 702.20 2.5e-93 1.0e-89 88.99 8 0 1175

tccgga tccgga|tccgga 0.0003544975387 854 1596.51 1e-92 4.2e-89 88.37 9 0 8540

cacgtg cacgtg|cacgtg 0.0001073988071 122 483.68 3.8e-86 1.6e-82 81.81 10 0 1220

gagccc gagccc|gggctc 0.0001672589397 295 753.27 4.5e-81 1.8e-77 76.74 11 0 1475

gggccc gggccc|gggccc 0.0000750329100 61 337.92 7.6e-77 3.1e-73 72.51 12 0 610

cccggg cccggg|cccggg 0.0001905898589 396 858.34 6.5e-70 2.6e-66 65.58 13 0 3960

gagctc gagctc|gagctc 0.0001011315302 139 455.45 7.8e-68 3.2e-64 63.50 14 0 1390

gtcgac gtcgac|gtcgac 0.0002276085625 522 1025.06 1.1e-67 4.6e-64 63.34 15 0 5220

gcatgc gcatgc|gcatgc 0.0002398058745 563 1079.99 1.9e-67 7.9e-64 63.10 16 3 5630

tggcca tggcca|tggcca 0.0002501093155 598 1126.39 3.1e-67 1.3e-63 62.90 17 0 5980

gcgcgc gcgcgc|gcgcgc 0.0007046383334 2269 3173.40 1.7e-64 6.8e-61 60.17 18 191 22690

cttttc cttttc|gaaaag 0.0007143147258 2375 3216.98 6e-55 2.5e-51 50.61 19 5 11875

attata attata|tataat 0.0003292469412 957 1482.79 1.5e-48 6.3e-45 44.20 20 46 4785

cagctg cagctg|cagctg 0.0005293041322 1720 2383.77 1.1e-46 4.4e-43 42.36 21 0 17200

ctgaag ctgaag|cttcag 0.0008012245683 2792 3608.39 9.1e-46 3.7e-42 41.43 22 0 13960

aggcct aggcct|aggcct 0.0001808089374 446 814.29 1.9e-45 7.6e-42 41.12 23 0 4460

 column headers
1 seq            oligomer sequence
2 identifier     oligomer identifier
3 exp_freq       expected relative frequency
4 occ            observed occurrences
5 exp_occ        expected occurrences
6 occ_P          occurrence probability (binomial)
7 occ_E          E-value for occurrences (binomial)
8 occ_sig        occurrence significance (binomial)
9 rank           rank
10 ovl_occ        number of overlapping occurrences (discarded from the count)
11 forbocc        forbidden positions (to avoid self-overlap)

seq identifier exp_freq occ exp_occ occ_P occ_E occ_sig rank ovl_occ forbocc

aaaaaa aaaaaa|tttttt 0.0039539646545 10935 16381.36 0 0e+00 999.00 1 3702 54675

cttttc cttttc|gaaaag 0.0017351393373 5782 7188.72 1.6e-66 6.7e-63 62.17 2 15 28910

ggatcc ggatcc|ggatcc 0.0001434041350 230 594.13 1.9e-65 7.8e-62 61.11 3 0 2300

ttaaaa ttaaaa|ttttaa 0.0019117054886 6482 7920.24 6.8e-63 2.8e-59 58.56 4 543 32410

catgaa catgaa|ttcatg 0.0010486435958 3394 4344.55 3.8e-51 1.5e-47 46.81 5 247 16970

cttgac cttgac|gtcaag 0.0004422085347 1337 1832.08 3.2e-34 1.3e-30 29.89 6 0 6685

gatcaa gatcaa|ttgatc 0.0011548858071 3973 4784.72 6e-34 2.5e-30 29.61 7 245 19865

agcttc agcttc|gaagct 0.0010722700965 3673 4442.44 6e-33 2.4e-29 28.61 8 126 18365

atatca atatca|tgatat 0.0011908576718 4143 4933.75 2.7e-31 1.1e-27 26.96 9 194 20715

tataaa tataaa|tttata 0.0012319046253 4334 5103.81 9.6e-29 3.9e-25 24.40 10 342 21670

aaaatt aaaatt|aatttt 0.0014280767833 5097 5916.55 4.9e-28 2.0e-24 23.70 11 223 25485

atatat atatat|atatat 0.0004547677804 1434 1884.11 1.4e-27 5.9e-24 23.23 12 91 14340

agctga agctga|tcagct 0.0013886969195 5045 5753.40 7.2e-22 3.0e-18 17.53 13 259 25225

tgtcaa tgtcaa|ttgaca 0.0008065232613 2810 3341.44 1.8e-21 7.2e-18 17.14 14 0 14050

gtacaa gtacaa|ttgtac 0.0004291427466 1404 1777.95 1.9e-20 7.7e-17 16.12 15 76 7020

cgcgga cgcgga|tccgcg 0.0003821785924 1247 1583.37 9.2e-19 3.8e-15 14.42 16 67 6235

cctttc cctttc|gaaagg 0.0007764466766 2738 3216.83 2.4e-18 9.9e-15 14.00 17 6 13690

ctaatc ctaatc|gattag 0.0002591338295 803 1073.60 3.2e-18 1.3e-14 13.89 18 1 4015

cccccc cccccc|gggggg 0.0001012307783 255 419.40 3.2e-18 1.3e-14 13.88 19 23 1275

aattat aattat|ataatt 0.0007415053427 2608 3072.07 4.4e-18 1.8e-14 13.74 20 77 13040

aaattt aaattt|aaattt 0.0006311269231 2196 2614.77 2e-17 8.2e-14 13.09 21 0 21960

agctgc agctgc|gcagct 0.0009982041033 3609 4135.58 3e-17 1.2e-13 12.91 22 198 18045

gatcta gatcta|tagatc 0.0002659860046 837 1101.99 4.4e-17 1.8e-13 12.74 23 11 4185

Figure 6 | Detection of restriction sites in whole genomes. (a,b) Hexanucleotides having the most significant level of under-representation in the whole
genome of (a) Escherichia coli K12 and (b) Bacillus subtilis, respectively.
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