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INSTALL 
 
• Download self-extracting archive autozen.exe from website. 
• Double-click on autozen.exe to expand it inside the zen directory. 
• Double-click on any model file *.zen files, open it with the ZEN program zen.exe. 
• Drag and drop any model file *.zen to the zen.exe icon will run the ZEN program with the 

file as input. 
 

 For PC/Linux and MAC/OSX versions, see p. 47. 
 
 
Cover. Figure 1. Deployment of polymorphism in a population subjected to asymmetric competition. The 
distribution of phenotypes is shown along evolutionary time in ordinates. ZEN simulation, discrete version of a 
model from Kisdi & Geritz 2001. 
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The ZEN computer program is designed to study population dynamics models, with an 
evolutionary component in the line of the theory of adaptive dynamics. ZEN handles discrete 
time deterministic or stochastic relations with discrete or continuous variables. Its 
evolutionary mechanism allows to explore polymorphism in populations from an ecological 
point of view. 
 
ZEN performs similarly to an individual-based software: it is in fact ‘phenotype-based’. The 
kernel is a symbolic evaluator handling multivalued variables. The ZEN program is 
compatible with the ULM program: it lacks the matrix formalism of ULM, but relation-type 
ULM models can be run with ZEN. 
 
The biological system under study is described in a text file, the model file, using a reduced 
declaration language, and appropriate mathematical functions. When ZEN is run with the 
model file as input, the model can be studied interactively, producing numerical results and 
graphical representations. 
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1. THEORETICAL FRAMEWORK 
 
 

Ecology and evolution 
 
Ecological models with an evolutionary component allow to study several biological 
phenomena, like sexual selection, host-pathogens interactions, coevolution of plants and 
pollinators, mimicry, development of the immune system, evolution of cooperation, evolution 
of life history traits, and more generally biodiversity and speciation. 
 
The first evolutionary models in biology are verbal arguments, like Fisher’s proof that the 
primary sex ratio is 1/2. Theoretical evolutionary models started to develop in the 80’s with 
quantitative genetics (Lande 1982) and game theory (Maynard Smith 1982). In this context 
originated the important notion of Evolutionary Stable Strategy (ESS), which had premises in 
the work of Hamilton (1963) on kin selection. 
 
 

Adaptive dynamics 
 

The recent theory of adaptive dynamics (Metz et al. 1996, Dieckmann & Law 1996) is based 
on population dynamics. It incorporates implicitly a hereditary mechanism, and allows 
studying the evolution of continuous phenotypic traits under the process of mutation-
selection. Selection operates via ecological interactions. The evolutionary outcome of the 
system is determined from the persistence of rare mutants with trait s’ in a resident population 
with trait s via the fitness gradient 
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The fitness function f is computed from the ecological setup. 
 
A great achievement of the theory is the classification of the possible evolutionary outcomes 
(Geritz et al. 1998), making a synthesis of previous results. For example the notion of CSS 
(Continuously Stable Strategy, Eshel and Motro 1981) and ESS could be unified in a single 
framework. A fascinating eventuality is that of evolutionary branching (Geritz et al. 1998), 
which stems from the biological nature of the models, and does not appear in physical 
systems. In this situation, ecological constraints lead to disruptive selection, and possibly to 
sympatric speciation (Maynard Smith 1966, Benton & Pearson 2001), by means of assortative 
mating (Dieckmann & Doebeli 1999). 
 
In the context of adaptive dynamics, it has been shown by Dieckmann that, on the way to the 
evolutionary attractor, evolution can be assumed to proceed by trait substitution, the 
population remaining monomorphic in each trait. A canonical (deterministic) equation 
accounting for the evolutionary dynamics of traits can be built. The canonical equation has 
been placed in a general mathematical framework by Nicolas Champagnat (Champagnat et al. 
2001). 
 
However, in the case of evolutionary branching, no equation is known that accounts for the 
dynamics of the polymorphic population. 
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Individual-based models 
 

Individual-based models are appealing in biology because they have the potential to simulate 
biological phenomena finely. However, without a strong theoretical background their results 
can be difficult to interpret, as a consequence of their inherent stochasticity. Moreover, they 
can be memory and time consuming. Another drawback is that they are usually specific: 
developing ‘generic’ individual-based programs is a difficult task. 
 
Individual-based programs have been used successfully in adaptive dynamics (Dieckmann & 
Law 1996), using a different method than that of ZEN. 
 
The advantage of using simulations is that limitations in the theory of adaptive dynamics can 
be relaxed. In the ZEN framework: 
• mutations need not be small, 
• there are no restrictions on their distributions, 
• polymorphism is fully accounted for, 
• no fitness function is necessary. 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 2. Close up of an evolutionary branching showing the jumps in adaptive trait 

(evolutionary time in abscissas, model from Ravigné 2000). 
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The ZEN program 
 
ZEN simulates the evolution of populations under the mutation-selection process. 
 
Ingredients operated by the ZEN program are: 
• Stochastic equations in discrete time describing the dynamics of finite populations, 
• Adaptive traits and their mutations (mutation rates, distributions, occurrences), 
• Ecological interactions between phenotypes. 
 
The last 2 ingredients may be omitted, in which case population dynamics are simulated with 
no evolutionary component. 
 

Phenotypes 
 

The evolutionary component of ZEN is ‘phenotype-based’. A phenotype is a set of 
individuals sharing the same values of their adaptive traits. Within a phenotype individuals 
are identical. We say that a population is monomorphic for a trait if the distribution of the trait 
across phenotypes is unimodal, and polymorphic if the distribution is multimodal. 
 
In ZEN, a set of phenotypes is called a group. At initialization, groups are strictly 
monomorphic, containing a single phenotype (with several individuals). During the ZEN 
simulation, mutant phenotypes created by the triggering of mutations interact with resident 
phenotypes. They persist or go extinct by the play of ecological interactions, possibly leading 
to evolutionary branching and polymorphism (see cover Fig. 1, and Fig. 2). 
 

How ZEN works 
 
In population dynamics, the population vector N is updated from one time step to the next 
using discrete relations: 

)(NFN =′ . 
In evolutionary dynamics, the function F depends on a set S of adaptive traits: 

)(NFN S=′ . 
In the ZEN evolutionary formalism, a group of phenotypes is defined by a set of relations and 
adaptive traits. Let’s assume for simplicity that there is only one adaptive trait s, and a single 
relation: 

)(nfn s=′ . 
Within the group, there is a description of the way mutations in the adaptive trait occur. As 
the ZEN simulation proceeds, phenotypes are created and destroyed. When there are P 
phenotypes with traits )1(s , …, )(Ps , each phenotype (i) is driven by his own relation: 

)( )()(
)(

i
s

i nfn i=
′ , 

with )(in  the number of individuals in the phenotype, and )(is  the value of the trait in the 
phenotype. The relation-variable n is multivalued, with values )1(n , …, )(Pn . The above 
phenotype-specific relations are not independent but linked by ecological interactions. 
Typically, the population size )(in  in each phenotype depends on the population size in other 
phenotypes in the same group, or in other groups. 
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The ZEN process 
 
The mutation procedure has 2 important parameters, the mutation rate µ and the standard 
deviation σ in the distribution of mutations. These parameters influence the evolutionary time 
t, and also the execution time: 

t is proportional to µ
1 , 

t is proportional to 2
1

σ
. 

For example, multiplying σ by 2 divides evolutionary time by 4, phenotypes making larger 
incursions in the evolutionary space. In this case, the execution time should be reduced 
because the computations are roughly the same, while the simulation needs to be run for a 
shorter period. On the contrary, multiplying µ by 2 divides evolutionary time by 2, but should 
not reduce execution time. Indeed, more mutants are created, resulting in more computations. 
The mutation procedure is described precisely in section 3. 
 
The process operated by ZEN is a form of branching process: it is density-dependent (though 
this is not requested) in order to avoid population sizes to blow, and it is bifurcating because 
of the mutations. This process has not been studied mathematically. 
 
 

 
 
 

Figure 3. Same model as in Fig. 1, with a different competition function 
(discrete version of a model from Kisdi & Geritz 2001). 
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2. FIRST STEPS 
 
 

Population dynamics 
 
Population dynamics models in discrete time are based on the life cycle graph. The life cycle 
is a macroscopic description of an organism within a population. It incorporates the genotype 
and part of the phenotype. 

J
s

f

A

v  
 
In this (female-based) example, there are 2 age classes, juveniles and adults. Juveniles survive 
to the adult stade with survival rate s. Adults survive with adult survival rate v, and reproduce 
with fertility rate f. Let 1n  be the number of juveniles, and 2n  the number of adults. Relations 
can be written, relating population size from one time step to the next: 

(1a)         21 fnn =′  

(1b)         212 vnsnn +=′ . 
Relation (1b) means that the number of adults at the next time step is obtained from the 
number of juveniles surviving with rate s, plus the number of adults surviving with rate v. 
These relations can be put in matrix form and relevant informations about the dynamics 
(growth rate, population structure, elasticities) can be retrieved (Caswell 2000), as is done in 
the ULM program (Legendre & Clobert 1995, Ferrière et al. 1996). 
 
 
Example:  model file regis.zen 
 
• Drag and drop model file regis.zen to the zen.exe icon. The file appears in the Model file 

window: 
 

defmod regis(2) 
rel: r1,r2 
 
defrel r1 
n1 = f*n2 
 
defrel r2 
n2 = s*n1 + v*n2 
 

These declarations correspond to relations (1ab). 
The declaration language is described in section 3. 
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Some more declarations are commented below: 
 

defvar n = n1 + n2      { total population size n 
 
defvar r = 115       { basic fertility r 
 
defvar f = r*exp(-0.01*(n1+n2)) { fertility f regulated by density 
 

• Click button  to ‘compile’ the file, that is to translate it into internal representation. 
• Click button  to run the model (100 time steps by default). Population trajectories are 

displayed in the graphic window #1: n1 and n2 along time t. 
• Click button  to open graphic window #2. Click button  in window #2 to set the 

graphics. Change t to n1, n1 to n2, and remove n2. Select line off in the General panel. 
Click OK. 

• Click button  in the main window to initialize the system (t = 0). Select option Run | 
Settings. Change Number of time steps to 10000, change Dt text interp to 1000, click OK. 
Click  to run the model for 10000 time steps, with output in the main window every 
1000 times steps. A strange attractor appears in window #2 (Fig. 4), with the 
corresponding population trajectories in window #1. 

• Click button  to view the variables. Change the expression of variable r to 50. Type 
<return>. The system is initialized (init). Click the Run button . A single point 
equilibrium is displayed. 

 
 
 

 

 
 

 
Figure 4. Density-dependent population dynamics produce this strange attractor 

(model from Ferrière 1992). 
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Demographic stochasticity 
 
Demographic stochasticity is inherent to the demographic process. Its effects are more 
important when population size is small. Using the previous example, it is modeled by 
building a branching process on the basic relations (1ab), using integer-valued distributions: 

(2a)         ),( 21 fnpoissonn =′ , 

(2b)         ),(),( 212 vnbinomsnbinomn +=′ . 
Relation (2a) means that the number of juveniles at the next time step is obtained by summing 
f samples of the Poisson distribution. In relation (2b) the number of survivors is computed 
using binomial distributions. 
 
This modeling of demographic stochasticity gives an individual-based feature to the 
simulation. Individuals are not distinguished by their demographic parameters, which keep 
their average values, but the fate of individuals is taken into account, via the chance 
realization of these average parameters. 
 
 
Example: model file pass_2s.zen 
 
This is a 2-sex model for passerine (Legendre et al. 1999). Demographic stochasticity is 
modelled in the same way as in relations (2ab). 
 
• Click . Type ‘graph  t  n’ and <return> in the Interp panel of the main window to 

parameterize the graphics in window #1 (population size n as a function of time t). Type 
‘yscale 0 400’ to fix the bounds on the Y axis. Type ‘addgraph’ to superimpose graphics. 

• Type ‘run 50 10’ to run the model for 50 time steps with output every 10 time steps. The 
stochastic trajectory appears in graphic window #1. 

• Type ‘init 2’ in the Interp panel. The system is initialized (init), with seed = 2. Now type 
‘run’. Another realization of the process is run for 50 time steps (the previous trajectory 
corresponded to seed = 1). The trajectory appears superimposed in the graphic window. 
Type ‘init 3’, ‘init 4’, … to produce other trajectories. 

• Type ‘montecarlo 50 1000’ to run the Monte Carlo simulation (50 time steps, 1000 
trajectories). The mean trajectory is displayed. The probability of extinction along time 
appears in the main window. 

 
The previous commands could have been executed by appropriate clicking. See section 4 for 
the list of available commands. 
 
• Click  in graphics window to set graphics. Unselect option superimpose in the General 

panel. Select options MinMax and 2 sigma in the MonteCarlo panel. Click OK. 
• Click  to run Monte Carlo simulation (50 time steps, 1000 trajectories). Mean trajectory 

with minima, maxima and 2 sigma confidence intervals, along time and across 
trajectories, are displayed. 

• Click  to open a text window. Click the Settings option  in the text window. Replace 
nm1 by n, remove nm2, nf1, nf2. Click OK. 

• Click  to run Monte Carlo simulation (50 time steps, 1000 trajectories). Mean values of 
n along time, over all trajectories and over non extinct trajectories, appear in the text 
window with standard errors (SE). 
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Evolutionary dynamics 
 
The population dynamics can be further refined by distinguishing individuals according to 
phenotypic traits. These traits can be adaptive, subjected to the mutation-selection process, 
and this is what is intended in the evolutionary component of ZEN. 
 
Example:  model file kisdi.zen 
 
The original model (Kisdi & Geritz 2001) is built from a Lotka-Volterra system  

(3)          ∑α−=
j

jjii
i

i
nsssrdt

dn
n ),()(1 , 

with in  the density of phenotype i, )( isr  the intrinsic growth rate depending on the adaptive 
trait is , the size of individuals. The sum is an interaction term depending on the difference in 
size via the competition function α. This model is translated into a discrete one, handling 
integer population sizes: 
(4)          )),(()1( ftnpoissontn =+ , 
with the growth rate )exp( rbraf −=  (see below). 
 
Note: The use of the Poisson distribution is not mathematically rigorous, though it produces 
satisfactory results. See p. 44 for a rigorous approach. 
 
• Drag and drop model file kisdi.zen to the zen.exe icon. The file appears in the Model file 

window. Here is the declaration of the group, to which comments are added: 
 

defgroup gg(1)     { declaration of group gg 
rel: rel 
mut: s 
 
defrel rel 
n = poissonf(n,f)     { the relation corresponds to Eq. 4 
 
defvar n = 1000     { initial population size in the group 
 
defmut  s = 1.0     { declaration of adaptive trait s, with initial value 1 
trigger: t1      { and characteristics of mutations 
occur: 1 
number: binomf(n,mu) 
distrib: min(max(gaussf(s,sigma),s_min),s_max) 
replace: 0 
concern: n 
 
defvar ra = r(s)          { growth term 
 
defvar rb = groupsumf(gg,alpha(focalf(s),s))  { interaction term 
 
defvar f = exp(ra - rb)   { growth rate 
 
endgroup       { end of group declaration 

 
The group corresponds to the system of equations (3), to which is added the description of 
mutations in the adaptive trait s (in blue). In the ZEN formalism, population size n and the 
adaptive trait s are multivalued variables, and so are the group variables ra, rb, f. The 
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expression for variable rb can be read: ∑α==
s

nsssrbrb )*,(*)( . It describes the ecological 

interactions (the competitive environment perceived by the focal phenotype with trait s*), and 
corresponds to the sum in Eq. 3. The functions r (growth) and alpha (competition) appearing 
in the declaration of ra and rb are declared elsewhere in the file: 
 

deffun r(s) = 4 - s 
 

deffun alpha(s1,s2) = c*(1 - 1/(1 + nu*exp(-k*(s1 - s2)))) + a 
 
• Click . Click  in the graphic window to set graphics. Replace nnn by s. In the Axis 

panel, set Ymax to 4, select option Fix Yscale (this sets the bounds on the Y axis). Click 
OK. Click  to run the model (100 time steps). The diversification of phenotypes appears 
in the graphic window: the distribution of the trait s across phenotypes is displayed along 
evolutionary time in abscissas. The color indicates the density in each phenotype (red, 
yellow, green, blue with decreasing density). The main window tells that at time t = 100, 
there are 4390 individuals in the group, dispatched in 128 phenotypes: 
 

Model kisdi -> pop = 962.0 
growth rate from [t = 0] -> 0.999613 

Group gg -> pop = 4390  nb_pheno = 128 
growth of group from [t = 0] -> 1.014903 
life expectancy of phenotypes from [t = 0] -> 0.8435 
growth rate of phenotypes from [t = 0] -> 1.049634 

 
• Select option Variable | All to get a hierarchical view of ZEN objects. Select Phenotypes 

in group gg. All phenotypes present at time 100 appear in the left panel (128 phenotypes 
in all): 

 
Pheno#3942 created from #379 at t = 100   nb = 1 -> 0.023% 

     n = 1 
s = 0.9794 
ra = 3.021 
rb = 6.955 

 f = 0.01955 
Pheno#3941 created from #379 at t = 100   nb = 1 -> 0.023% 

    n = 1 
     s = 0.9747 
     ra = 3.025 

rb = 6.976 
 f = 0.01925 

   (…) 
Pheno#1874 created from #793 at t = 48   nb = 692 -> 16% 

     n = 692 
     s = 1.01 
     ra = 2.99 
     rb = 6.823 
     f = 0.02164 
   (…) 

Pheno#535 created from #442 at t = 14   nb = 131 ->  3% 
  n = 131 

     s = 1.042 
     ra = 2.958 

rb = 6.685 
 f = 0.02407 
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Pheno#379 created from #1 at t = 10   nb = 80 -> 1.8% 
  n = 80 

s = 0.9762 
ra = 3.024 
rb = 6.969 

 f = 0.01935 
 
In each phenotype, the values of the adaptive trait s are given, together with the values of the 
group variables. Phenotypes #3942 and #3941 are mutants created at time t = 100. They 
contain 1 individual. At the bottom appear the most ancient phenotypes. Phenotype #1874 is 
the most frequent (692 individuals, 16% of the group population), though its growth rate f is 
less favorable than that of phenotype #535 (131 individuals). The last phenotype #379 (80 
individuals) mutated from the initial (now extinct) phenotype #1 at time t = 10. The term nb is 
the number of individuals in the phenotype, computed by summing the values of the relation-
variables of the group. Here there is only one relation with variable n, so that n and nb agree. 
 
• Select Phylogeny in the Variable | All panel. A phylogenetic tree of all actual phenotypes 

is displayed: 
 

(…) 
Pheno#1874 t = 48 -> 16% 
s = 1.01 

   Pheno#3254 t = 83 -> 3.1% 
   s = 0.9736 

   Pheno#3845 t = 99 -> 0.14% 
   s = 0.9807 
   Pheno#3888 t = 100 -> 0.023% 
   s = 0.9936 

   Pheno#3852 t = 99 -> 0.068% 
   s = 1.046 

   Pheno#3856 t = 100 -> 0.023% 
   s = 1.052 

   Pheno#3912 t = 100 -> 0.023% 
   s = 1.014 
   Pheno#3913 t = 100 -> 0.023% 
   s = 1.006 
   Pheno#3914 t = 100 -> 0.023% 
   s = 1.007 
   Pheno#3915 t = 100 -> 0.023% 
   s = 1.004 

(...) 
 
The most abundant phenotype #1874 created at time 48 produced #3254 at time 83, #3852 at 
time 99, #3912 at time 100, etc… Its descendant #3254 produced #3845 at time 99 and #3888 
at time 100. 
 
• Click  to initialize (init). Select option Run | Settings. Change Number of time steps to 

5000, and Dt text interp to 1000. Click OK to close the panel. Click  to run the model 
(5000 time steps). This takes about 8 mn. The graphics correspond to the bottom of Fig. 1. 

 
• Click  to view the variables. Change expression of variable c0 from 1 to 2, type 

<return>. Change expression of variable a0 from 1 to 0, type <return>. This modifies the 
parameters in the competition function alpha. The system is initialized. Click  to run the 
model (5000 time steps). This takes about 4 mn. The different shape of the evolutionary 
branching can be appreciated. The graphics correspond to the bottom of Fig. 3. 
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3. OBJECTS 
 
 
ZEN models are built from objects related by mathematical functions, and processed along 
time by the ZEN kernel. The models are described in an input text file (*.zen file), using a 
declaration language. The model file is processed by the compile command ( ), and searched 
for syntax errors. When the syntax is correct, the model can be run ( ). 
 
There are 6 types of objects handled by the ZEN kernel with corresponding keywords: 
 
 
General 

 
  defmod   declaration of model 
  defrel   declaration of relation 
  defvar   declaration of variable 
  deffun   declaration of function 
 
Evolutionary 

 
defgroup  declaration of group of phenotypes 

(…) 
defmut declaration of adaptive trait within group 
(…) 

endgroup  end of group declaration 
 
 
Each object is referenced by a user chosen name (names begin with any letter ‘a’ to ‘z’). 
Other keywords specify mathematical operators or functions (see section 5). 
 
General 
 
• Declarations of objects must be separated by blank lines. 
• Lines beginning with ‘{‘ are comment lines and are not processed. 
• The model file must begin with the declaration of a model (defmod). 
• The declaration of a model must precede the declarations of its associated relations.  
• Relations may be declared without any link to a model. 
• All variables and functions must be declared explicitly. 
• Letters are converted to low case; the interpreter is not case sensitive. 
 
Evolutionary 
 
• Declaration of adaptive trait (defmut) is local to a group. 
• Declaration of variable (defvar) and relation (defrel) within a group relate these objects to 

the group. 
• General purpose variables (like constants) should not be declared within a group. 
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defmod        declaration of model 
 
 
defmod  model_name(k)  declaration of model of size k 
rel:  rel1, ... , relk    names of k relations 
 
 
Example: model file regis.zen 
 
defmod  regis(2)  
rel: r1, r2       2 relations, r1 and r2 

 
A model describes populations whose dynamics are driven by a set of discrete time relations, 
r1 and r2 in the example. A single model file may include several models. 
 
 
 
defrel        declaration of relation 
 
 
defrel  relation_name 
var_name = expression   expression for the relation 
 
 
Example: model file regis.zen 
 
defrel  r1 
n1 = f*n2 
 
defrel  r2 
n2 = s*n1 + v*n2 
 
In this example, variables n1 and n2 are relation-variables constituting a population vector. 
From one time step to the next, relation-variables are updated in parallel (and not 
sequentially), as would be the case in matrix form: 
 

ttt n
n

vs
f

n
n











=





+ 2
1

12
1 0 . 

 
The population size of the model is the sum of the values of the relation-variables: n1 + n2. 
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defvar        declaration of variable 
 
 
defvar  variable_name = expression 
 
 
There is one and only one predefined variable, whose name is t for ‘time’. Variable t takes 
values 0, 1, 2, ... as the system is run. Other variables are declared by the user. 
 
If variable_name corresponds to a variable pertaining to a relation (such a variable is called a 
a relation-variable), then expression must be a real number, which is the initial value of the 
variable. Variables declared within a group (group variables) are multivalued (see defgroup). 
Group variables can be used outside of their group within the scope of the functions 
groupmeanf, groupmaxf, groupminf, groupsumf, groupsum1f (section 5). 
 
 
Examples: 
 
defvar  s0 = 0.2     constant 
 
defvar  n1 = 100     relation-variable with initial value 100 
 
defvar  phi = (1+sqrt(5))/2 constant 
 
defvar  x = gaussf(2,0.1)  random variable 

normal distribution with mean 2 and standard deviation 0.1 
 
defvar  w = if(t > 10, x, 0) conditional 
 
defvar  n1 n2 = 100    shared declaration 
 
 
 
deffun        declaration of function 
 
 
deffun  function_name(arg1, ... , argN) = expression 
 
The arguments of the function have the names arg1, …, argN. 
 
Examples: 
 
deffun  som(v,n) = (1 - v^(n+1)) / (1 - v)  sum of a geometric serie 
 
deffun  fac(n) = if(n, n*fac(n-1), 1)   recursive definition of the factorial 
 
deffun alpha(s1,s2) = c*(1 - 1/(1 + nu*exp(-k*(s1 - s2)))) + a  (file kisdi.zen) 
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The update procedure, from one time step to the next 
 
 
At each time step of the ZEN simulation, relations and variables are updated in a specific 
order given below. 
 
 

 The right hand side expression of all relations are computed. 
 

 Relation-variables associated with group relations are updated. 
 

The number nb of individuals in each phenotype in each group is known at this stage, 
as the sum of the values of the relation-variables of the group. 
All phenotypes for which nb = 0 are destroyed. 

 
Relation-variables associated with model relations are updated. 
Relation-variables associated with other relations are updated. 

 
 Time t is updated (t = t + 1). 

All remaining variables are updated according to their dependencies. 
 

Some variables can trigger mutations (see the mutation procedure forward). 
The mutations are triggered as soon as their triggering variable is updated. 

 
 
At initialization (init), the ZEN program builds a hierarchy of all variables, according to their 
dependencies. It is checked whether there are circular definitions of variables: if this is the 
case, the message “cycling definition of variable xxx” warns the user that the computations 
are not reliable. From the hierarchy an order of evaluation over all variables is established. 
This order is used throughout the simulation to update the variables consistently (use button 

 to see the order of evaluation). 
 
The values of the ZEN variables are computed in real numbers arithmetic. The relation-
variables in models represent population numbers or densities: they take discrete (integer) 
values or continuous (real) values. The relation-variables in groups represent finite 
populations, and should take integer values. In any case, for each phenotype, the sum of their 
values represents the number nb of individuals in the phenotype, and is rounded to the nearest 
integer value. 
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defgroup       declaration of group 
 
 
defgroup group_name(k)  declaration of group of size k 
rel:  rel1, ... , relk    names of k relations 
mut: mut1, …, mutm   names of m adaptive traits 
 
 declarations of relations rel1, …, relk (using defrel) 
 declarations of variables associated with these relations (using defvar) 
 declarations of local group variables (using defvar) 
 declarations of adaptive traits mut1, …, mutm (using defmut) 
 
endgroup       end of group declaration 
 
 
A group is sub-object of a model. It represents a set of individuals pertaining to a single 
phenotype at the beginning of the simulation, and to several phenotypes as evolution 
proceeds. The relations (defrel) account for the population dynamics of the group; the 
adaptive traits (defmut) are subjected to mutations. During the ZEN simulation, mutations are 
triggered, new phenotypes are created, while others go extinct by the play of ecological 
interactions. Within a group, individuals are distinguished by their phenotypes, that is by the 
values of their adaptive traits. Variables declared in a group (called group variables) are 
multivalued: they have as many values as there are different phenotypes. 
 
Example:      model file kisdi.zen 
 
defgroup gg(1)   declaration of group gg 
rel: rel      with relation rel 
mut: s      and adaptive trait s 
 
defrel rel     declaration of group relation rel 
n = poissonf(n,f) 
 
defvar n = 1000   n is a group relation-variable: 
        number of individuals in the initial single phenotype 
        number of individuals in each phenotype during the simulation 
 
defmut s = 1.0   declaration of adaptive trait s (see defmut) 
(…) 
 
defvar ra = r(s)   ra, rb, r are group variables 
        each phenotype has is own values of these variables 
 
defvar rb = groupsumf(gg,alpha(focalf(s),s)) 
        functions groupsumf and focalf are described in section 5 
 
defvar f = exp(ra – rb) 
 
endgroup     end of group declaration 
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defmut       declaration of adaptive trait 
 
 
defmut mut_name = val declaration of adaptive trait with initial value val 
trigger: var_name   name of triggering variable 
occur: expr_occur   expression for date of occurrence 
number: expr_number  expression for number of mutations 
distrib: expr_distrib   expression for distribution of mutations 
replace: 0/1     replace option, 0 or 1 
concern: var_concern  name of concerned variable  
 
 
The declaration of adaptive trait appears only within the scope of a group (defgroup … 
endgroup), and has a corresponding entry in the group declaration (see defgroup). 
The defmut keyword is followed by 6 keywords (trigger, occur, number, distrib, replace, 
concern), in this order (no blank line). These keywords describe the way mutations occur. 
Their meaning is explained below. Adaptive traits are considered as group variables with 
special features. 
 
 
Example:      model file kisdi.zen 
 
defmut s = 1.0    
{ adaptive trait s has initial value 1 
trigger: t1    
{ mutations are triggered by variable t1 
occur: 1     
{ they occur at each time step (next date = 1) 
number: binomf(n,mu)   
{ the number M of mutants is drawn from phenotype size n (number of individuals  
{ sharing the same value of s), with mu the mutation rate 
distrib: min(max(gaussf(s,sigma),0),4) 
{ the value of the adaptive trait s of mutants is drawn according to the normal distribution 
{ with standard deviation sigma (the distribution is constrained here between 0 and 4) 
replace: 0 
{ replace mode off 
concern: n 
{ the concerned variable is phenotype size n, to which M will be subtracted (M mutants). 
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The mutation procedure 
 
 
The mutation procedure triggers one or several times within each time step. It applies to all 
phenotypes in one or several groups. The procedure proceeds sequentially in the following 
way. 
 
1. trigger. The triggering variable allows to specify when, inside a time step, the 
corresponding adaptive traits are mutated. In the example above, the triggering variable is t1 = 
magicf(t) (see function magicf in section 5), triggering the mutation of trait s. After the update 
of relation-variables, time t is the first variable updated at each time step (see update 
procedure above): the declaration means in this example that the mutation procedure is 
triggered just after t is updated, and before any other variable is updated (see model file 
ravigne.zen for a more sophisticated example). 
 
2. occur. The date of the next occurrence is specified by an expression (1 in the example 
above). If the date (computed at the previous time step) does not match the time t, the 
mutation procedure is exited at this stage, and has no effect. 
 
3. number. For each phenotype (i), the number )(iM  of mutants is computed according to the 
expression provided. Typically, a fraction of the number of offspring in the phenotype mutate 
with the mutation rate µ. 
 
4. distrib. For each mutant in each phenotype, the mutated value s’ of the adaptive trait s is 
computed according to the expression provided. Typically, the value s’ is computed using a 
distribution around the trait value s of the phenotype, with the standard deviation σ. However, 
any expression can be used to compute s’. 
 
5. replace. The expression is the constant 0 or the constant 1. If the replace option is 1, when 
a mutant appears with trait s’, it is checked whether a phenotype with the same trait value 
already exists. If this is the case, the number of individuals in the existing phenotype is 
increased by 1, and no new phenotype is created. If the replace option is 0, the check is not 
performed. The option is intended for mutation with integer-valued distributions (for 
distributions with continuous values, the probability to create an already existing value of the 
trait is theoretically 0). The option replace = 1 can be time consuming. 
 
6. concern. The concerned group variable x represents, in each phenotype, the individuals 
subjected to mutations. As it is the case in the example above, the concerned variable is 
usually the variable from which the number of mutants is computed in the number section. 
 
Assume that there are P phenotypes at the start of the mutation procedure. During the 
mutation procedure, each phenotype (i) produces )(iM  mutants (number). A total of 

)()1( PMMN ++= L  new phenotypes are created, each one containing a single mutant 
individual, with the mutated value s’ of the trait s computed according to the distribution 
(distrib). The value of the concerned variable x (concern) on each mutant phenotype is set to 
1. The value of x on each original phenotype (i) of is set to )(iMx − . Consequently, the sum 
∑

i

ix )(  of the values of the multivalued variable x over phenotypes does not change. The 

number nb of individuals in the created mutant phenotype is set to 1. The number nb of 
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individuals in the original phenotype (i) is changed to )(iMnb − . Consequently, the number of 
individuals in the group does not change. At the end of the mutation procedure there are P + 
N phenotypes in the group. 
When a mutant phenotype is created, the values of the local variables and adaptive traits are 
set to those of the original phenotype, and the values of the relation-variables are set to 0. 
Then, the only modifications are the adaptive trait set to the mutated value s’, and the 
concerned variable x set to 1. In particular, variables depending on x in the mutant and in the 
original phenotype are not updated. After the mutation procedure, the values of variables in 
the original and in the created phenotypes can be temporarily inconsistent (but should be 
updated consistently at the next time step). The model must be constructed so that the update 
of variables and the triggering of mutations are consistent. 
 
 

Parallel and sequential mutations 
 
The mutation procedure is triggered each time a triggering variable is updated. A single 
variable can trigger several mutations, possibly in different groups. When mutations 1m , 

2m … are triggered by the same triggering variable, they do not interfere in the sense that im -
mutants are not subjected to any of the jm mutations. On the contrary, if mutations 1m , 2m … 
have been triggered and then mutations 1q , 2q … are triggered by another triggering variable, 
previous im -mutants are subjected to them. 
At the end of each execution of the mutation procedure, the created mutants belong to the 
group population. These mutants may influence the update of the variables which were not yet 
updated at the instant of their creation. 
 
Mutations can also occur in parallel, as a single mutational event. This is the case in the model 
file ravigne.zen: 
 
defgroup gg(2) 
rel : rel1, rel2 
mut : p, a1, a2 
(…) 
 
defmut p a1 a2 = 0.9 0.6 0.1 
trigger : declench 
occur : 1 
number : binomf(eggs,mu) 
distrib : min(max(gaussf(p,sigma),0),1); min(max(gaussf(a1,sigma),0),1); min(max(gaussf(a2,sigma),0),1) 
replace : 0 
concern : eggs 
 
The adaptive traits p, a1, a2 have initial values 0.9, 0.6, and 0.1 respectively (separated by 
blanks). They share mutational characteristics, except for the distributions (declarations 
separated by a semi-colon ‘;’). One can consider that the traits p, a1, a2 are coded by a single 
locus, with an infinity of alleles. Their ‘parallel’ mutations are computed simultaneously from 
a same set of individuals. The mutants have the mutated traits (p’, a1’, a2’). If the mutations 
of p, a1, a2 were ‘sequential’, the mutants would have the traits (p’, a1, a2), (p, a1’, a2), (p, 
a1, a2’), and would not be created from exactly the same set of individuals. 
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4. COMMANDS 
 
 
Once the ZEN model file is compiled (using ), commands allow to study the model 
interactively (run simulations, set graphics, …). Most commands rely on clicking the 
appropriate buttons (like  to run the model,  to initialize the model), and can be 
parameterized using the appropriate Settings options (like Run | Settings). Most commands 
can also be entered in the small Interp panel of the main window. The syntax is 
 
  command_name  p1  p2  ... 
 
where command_name is the name of the command, and p1, p2, ... are parameters of the 
command. For example, after typing 
 
  run  100  10 
 
the system is run for 100 time steps with output every 10 time steps in the large panel of the 
main window. Trajectories are displayed in the graphic windows. 
 

 Equivalently, select the Run | Settings option, set Number of time steps to 100, and Dt 
text interp to 10. Then click the Run button . 

 
Parameters of commands are names, integer or real values, or may be empty. Each command 
can be abbreviated by a single character. For example, 
 

 graph  t  n1  n2  is equivalent to  g  t  n1  n2 
 
and sets the trajectories to be displayed in graphic window #1, in this case the values of 
variables n1 and n2 along time t. 
 

 Graphics can also be parameterized using the Settings option  in the graphic 
windows. 

 
In this section, the list of commands is sorted in alphabetical order. The mention ‘on/off’ 
means that the command works in an on/off manner. For example, typing 
 

  addgraph 
 
allows to superimpose graphs in graphic window #1 (‘Addgraph ON’), and typing again 
 

  addgraph 
 
disables this option (‘Addgraph OFF’). 
 
The mention ‘graph’ indicates that the command is related with graphics. Optional command 
parameters are between < >. 
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Command file 
 
ZEN simulations can be performed in absence of the user via a command file, a text file 
containing the commands you would have typed in the interp panel. 
 
Example1: command file associated with model file kisdi.zen 
 

graph t s       set graphics, adaptive trait s along evolutionary time t 
yscale 0 4       fix bounds on Y axis 
run 30000 1000     run 30000 time steps, with results every 1000 time steps 
savegraph kisdi.bmp   save graphics in bitmap file kisdi.bmp 

 
The procedure is the following: 
• Drag and drop the zen.exe icon to the desktop, creating a shortcut to zen.exe. 
• Right click the shortcut to access to its properties, and add to the name of the program 

(zen.exe) the names of the files: 
C:\zen\zen.exe  kisdi.zen  kisdi.in    kisdi.out 

The syntax is: 
C:\zen\zen.exe  model_file  command_file  output_file 

It can be necessary to give the path to the files, like C:\zen\kisdi.zen. The output file is 
optional: if provided, results displayed in the main window will be stored in it.  

• Left click the shortcut to run the ZEN simulation. 
 
Example2: command file associated with model file pass_2s.zen 
 

graph t n       set graphics 
text t n        set output in the main window 
change nm1 2      set population size and structure 
change nm2 2 
change nf1 2 
change nf2 2 
montecarlo 100 1000   run Monte Carlo simulation 
change nm1 4      set population size and structure 
change nm2 4 
change nf1 4 
change nf2 4 
montecarlo 100 1000   run Monte Carlo simulation 

 
Several simulations with different model files can be grouped using a batch file. Simply create 
a text file containing the relevant commands for executing the ZEN program. 
 
Example3: batch file associated with the 2 previous examples 
 

zen.exe  kisdi.zen  kisdi.in  kisdi.out 
zen.exe  pass_2s.zen pass_2s.in pass2s.out 

 
The file must have the .bat extension, for example MySimul.bat. In this example, the batch 
file is located in the same directory as zen.exe, kisdi.zen, kisdi.in, pass_2s.zen and pass_2s.in. 
Double-click the batch file MySimul.bat to execute the simulations. 
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Addgraph                      on/off  graph 
 
 
abbreviation: + 
other name: add 
syntax:   addgraph 
function:  Superimpose graphics. 
default:   off 
 

 Use option Superimpose in the graphic windows Settings . 
 Graphic window #i can be selected using the window command. 

 
note:    When addgraph is on, do not resize the graphic window. 
 
 
example:  model file met_esd.zen 
 

? change  nmax  200   change value of population ceiling 
? graph  t  n      plot population size n as a function of time t 
? run  100       run 100 time steps 

 ? yscale        fix bounds in Y axis 
Yscale ON  [1; 3115] 
? addgraph      superimpose graphics 
Addgraph ON 
? change  nmax  50    back to initial value of population ceiling 

 Init 
? run  100       run 100 time steps 

           appreciate how the trajectory separates from the previous one 
           once the population ceiling is reached 
 
 



 24

Changevar  
 
 
abbreviation: c 
other name: change  
syntax:   change  var  expr 
parameters:  var variable name 
     expr mathematical expression 
function:  Replace actual expression of variable var by new expression expr. 
     System is initialized (init). 
 

 Use button  to display the model variables. The expression of any variable can be 
changed by clicking in the corresponding field. 

 
note:    Relation-variables must be set to a real number, which is their initial value. 

Adaptive traits (declared using defmut) are considered as variables, 
their initial value can be changed; it must be a real number. 

 
 
example1:  model file pass_2s.zen 
 

? graph  t  n       plot population size n as a function of time t 
? montecarlo  50  1000   run Monte Carlo simulation 
           probability of extinction pe = 0.616 

 ? change  s0  beta1f(0.2,0.15) make juvenile survival rate s0 stochastic 
? montecarlo  50  1000   run Monte Carlo simulation 

probability of extinction pe = 0.911 
 
example2:  model file kisdi.zen 
 

? graph  t  s   plot adaptive trait s as a function of (evolutionary) time t 
? yscale  0  4   fix bounds in Y 
? run  5000 100  run 5000 time steps, with results every 100 time steps 

(wait about 6 minutes) 
        display evolutionary branching at time t = 3200 
 
 ? view  mu sigma  display parameters of mutations 
 mu = 0.02     mu = mutation rate µ 

sigma = 0.02    sigma = standard deviation σ 
? change  sigma  0.04  multiply standard deviation by 2 
Init 
? run  2000   run 2000 time steps (wait about 2 minutes) 

display evolutionary branching at time t = 800 = 3200/4 
        shows that evolutionary time t is proportional to σ2 

? change  mu  0.04 multiply mutation rate by 2 
Init 
? run  1000   run 1000 time steps (wait about 4 minutes) 

display evolutionary branching at time t = 400 = 800/2 
        shows that evolutionary time t is proportional to µ 



 25

Distribution                     on/off  graph 
 
 
abbreviation: u 
other name: distrib 
syntax:   distrib <delta> 
parameter:  delta real number > 0 (default delta = 1) 
function:  Display distributions of variables specified by the graph command. 
     For variable x: number of values of x such that 
       delta*j <= x < delta*(j+1) for j = 1, ..., 10000. 
     For the run command, distribution along time. 
     For the montecarlo command, distribution across trajectories at time horizon. 
default:   off 
 

 Use option distrib in graphic windows Settings . 
 Select option include 0 to include the value 0 in the distribution. 
 Graphic window #i can be selected using the window command. 

 
 
note:    The distrib command does not affect the representation of group variables 
     (group variables are represented using their distribution across phenotypes). 
 
 
example1:  model file pass_2s.zen 
 
  ? graph  t  n   note: t is dummy for distrib 
  ? distrib  100   set distribution mode with delta = 100 
  Distribution mode ON 
  ? run  100    display distribution of n(t) along time 
  ? montecarlo  100  1000 
         display distribution of n(t) at time t = 100, over 1000 trajectories 
 
 
example2:  model file regis.zen 
 
  ? graph  t  n   note: t is dummy for distrib 
  ? distrib  0.1   set distribution mode with delta = 0.1 
  Distribution mode ON 
  ? change  r  50  lead to point-equilibrium 
  ? run  1000  1000 display distribution of n over 1000 time steps 
  ? change  r  60  lead to quasi-cycle 
  ? run  10000   display distribution of n over 10000 time steps 
  ? change  r  110  lead to chaos 
  ? run  10000   display distribution of n over 10000 time steps 
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Erase                           graph 
 
 
abbreviation: e 
other name: clear 
syntax:   erase 
function:  Clear graphics (window #1 or graphic window selected by command window). 
 

 Use alternatively button  in graphic windows. 
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File                        on/off 
 
 
abbreviation: f 
syntax:   file file_name  x1  ...  xN 
parameters:  file_name  name of file   

x1  ...  xN  names of variables 
function:  Create text file file_name and store values of variables x1, ... , xN in the file 

as the model is run (run or montecarlo command). 
When the variable names are not given, the file file_name is closed. 
Variables x1, ... , xN must either all belong to the same group or not belong to 
any group. 
Storage differ according to the run or montecarlo command. 
 
1) For the run command: 
For variables that are not group variables the format of each line in the file is: 

t  v1  v2  …  vN 
     where v1, …, vN are the values of variables x1, …, xN at time t. 
     There is a new line in the file at each time step that is a multiple of the second  

parameter ∆ of the run command (see run command). 
For example, with the command 

? run 1000 10 
     values are stored every ∆ = 10 time steps. 
     For group variables the format is: 

t  n1  v11  v21  …  vN1 
t  n2  v12  v22  …  vN2 
… 
t  nP  v1P  v2P  …  vNP 

     where n1, …, nP is the number of individuals in P phenotypes in the group at 
     time t, and v1i, …, vNi the values of the group variables in phenotype i. 

At each time step that is a multiple of ∆ there are as many lines in the file as 
phenotypes in the group. 
 
2) For the montecarlo command, montecarlo  T  M, with T the number  
of time steps and M the number of trajectories: 
For variables that are not group variables the format of each line in the file is: 

j v1  v2  …  vN 
     where v1, …, vN are the values of variables x1, …, xN at time T  

in the jth trajectory ( j = 1, …, M ).  
There is a new line in the file at each trajectory. 
For group variables the format is: 

j  n1  v11  v21  …  vN1 
j  n2  v12  v22  …  vN2 
… 
j  nP  v1P  v2P  …  vNP 

     where n1, …, nP is the number of individuals in P phenotypes in the group at 
      time T in the jth trajectory, and v1i, …, vNi the values of the group variables 

in phenotype i. 
For each trajectory there are as many lines as phenotypes in the group. 
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 Up to 5 files can be created in a session. 
 Up to 10 variables can be stored simultaneously in a file. 
 The path of the file can be specified (the default path is where the ZEN program is 

located, usually c:/zen). Example: ? file c:/myfolder/myfile.txt  x1 x2. 
 The number of digits after the decimal point can be specified using the separator ‘:’ 

(the default precision is 4). For example, after the command 
? file  myfile.txt  x1:10  x2 

variable x1 will be stored with 10 digits after the decimal point, and variable x2 with 4 
digits after the decimal point. 

 
example1:  model file ferriere1.zen 
 
  ? file  toto.txt  ux     open file toto.txt to store group variable ux 
  File toto.txt opened 
  ? file  titi.txt  tt  ux_moy   open file titi.txt to store variables tt and ux_moy 
  ? run  100 1      run model (100 time steps, ∆ = 1) 
  (…)         values are stored in the files every time step (∆ = 1) 
  ? file  toto.txt      close file toto.txt 
  File toto.txt closed 
  ? file  titi.txt      close file titi.txt 

File toto.txt closed 
 
File toto.txt looks: 
       0  4000  50.0000 
       1  1   49.7584 
       1  1   51.7309 
       1  1   49.7585 
      1  4137  50.0000 
       2  1   49.7584 
      2  1   51.7309 
       2  1   49.7585 
       2  3896  50.0000 
  (…) 
 
File titi.txt looks: 
       0  0.0000  50.0000 
       1  0.0689  50.0003 
       2  0.1171  50.0003 
      3  0.1660  49.9997 

(…) 
 



 29

example2:  model file nirma.zen 
 
  ? file  nirma.txt  di_simp  di_moy  open file nirma.txt to store variables 

di_simp and di_moy 
  File nirma.txt opened 
  ? montecarlo  1000 10   run model (1000 time steps, 10 trajectories) 
  (…)         values are stored in the file for each trajectory 
  ? file  nirma.txt     close file nirma.txt 
  File nirma.txt closed 
 
File nirma.txt looks: 
       1  1   49.7584 
       2  1   51.7309 
       3  1   49.7585 
  (…) 
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Graph                           graph 
 
 
abbreviation: g 
syntax:   graph  x  y1  ...  yN 
parameters:  x  y1  ...  yN  names of variables 
function:  Display variables y1, ... , yN as a function of variable x in graphic window. 
     If distribution mode is on, distributions of y1, ..., yN are displayed. 
     Group variables are represented by their distribution across phenotypes. 

For group variables, fix scales using commands xscale, yscale 
 

see also:   addgraph, distribution, erase, line, savegraph, window, xscale, yscale 
 

 Up to 6 graphic windows, numbered #1 to #6, can be created using button .  
 Each graphic window can be parameterized using the Settings option . 
 The graph command operates on window #1 unless window #i has been selected 

using the window command. It is useful in command files. 
 
note: When the number of time steps is larger that 10000, a sampling of the 

trajectories is performed (see Dt in the graphic window status bar). 
     For example, for 100000 time steps a point is taken every Dt = 10 time steps. 
     For group variables the resolution is 600x600. 
 
 
example1:  model file regis.zen 
 
  ? graph  n1 n2   set graphics for phase portrait 
  ? change  r 110   change bifurcation parameter 
  ? run  10000 1000  display strange attractor 
  ? change  r  60   change bifurcation parameter 
  ? run  10000    display limit cycle 
 
example2:  model file kisdi.zen 
 
  ? graph  s  t     set graphics for adaptive trait s with time in ordinates 
  ? xscale 0  4    fix bounds in X (0 <= s <= 4) 
  ? run  10000  1000  produce cover figure (in about 10 mn) 
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Help 
 
 
abbreviation: h or ? 
syntax:   help  <xxx> 
parameter:  xxx name of command or mathematical function 
function:  Give succinct on line information about commands and mathematical 
functions. 

help 
      list of commands and mathematical functions. 
     help  xxx 
      short description of command xxx or mathematical function xxx. 
 
 
example:  ? help  groupsum1f 
 

groupsum1f(G,expr) 
      sum of values of expression expr 
      over all phenotypes in group G 
      groupsum1f(G,x) = sum(i=1,..,groupcard;v_i) 
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Init     
 
 
abbreviation: i 
syntax:   init <j> 
parameter:  j integer >= 0, random generator seed 
function:  init 
      initialize: 
      t = 0, 
      variables are reset to their initial values, 
      groups are reset to their initial monomorphic state, 
      random generator is reset to its initial value (called seed). 
     init  j 
      init + seed initialized to j, 
      corresponding to the j-th trajectory of the Monte Carlo procedure. 
     init  1 
      init + back to the default seed (j = 1). 
remark:   init is performed automatically after the following commands: 
     changevar, montecarlo, newvar. 
 

 Command init can be performed using button  in the main window. 
 The random generator seed can be set using the Run | Settings option. 

 
 
example:  model file pass_2s.zen 
 
 ? graph  t  n 
 ? init 
 Init 
 ? montecarlo  50  100  give probability of extinction estimate 
 ( ... )        pe = 0.68 (at time 50) 
 ? init  500 
 random generator seed -> 500 
 Init 
 ? montecarlo  50  100  another simulation of the process 
 ( ... )        pe = 0.60 
 ? init  1 
 random generator seed -> 1 
 Init 
 ? montecarlo  50  1000 back to first simulation, better estimate 
 ( ... )        pe = 0.616  
 ? init  500 
 random generator seed -> 500 
 Init 
 ? montecarlo  50  1000 back to 2nd simulation, better estimate 
 ( ... )        pe = 0.615 
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Line                        on/off  graph 
 
 
abbreviation: l 
syntax:   line <col> 
parameter:  col integer in [1, …, 16], line color 
function:  If on lines are drawn between consecutive points in graphic window #1 
     (or window #i specified by the window command), using color col.  

Useful in command files. 
default:   on 
 

 Use alternatively option line off in graphic windows Settings . 
 Use color specification in graphic windows Settings , by clicking on the colored 

button next to the graphic variables panels Y1 Y2 Y3 Y4. 
 
 
example:  model file pass_2s.zen 
 
 ? graph  t  n 
 ? line  1 
 ? yscale  0  400 
 ? run  50    display red trajectory 
 ? addgraph 
 ? line  2 
 ? init  2 
 ? run  50    superimpose green trajectory 
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Montecarlo  
 
 
abbreviation: m 
other name: monte 
syntax:   montecarlo T M <Ext> <Esc> 
parameters:  T integer > 0, number of time steps 
     M integer > 0, number of trajectories 
     Ext real number > 0, extinction threshold (default Ext = 1) 
     Esc real number > 0, escape threshold (default Esc = 107) 
function:  Monte Carlo simulation:  

M trajectories are run over a time horizon of T time steps. 
System is initialized at the end (init). 

 
 Monte Carlo simulation is parameterized using the MonteCarlo | Settings option. 
 Monte Carlo graphics are parameterized using the Settings option  in the graphic 

windows. 
 Monte Carlo outputs are parameterized using the text windows Settings option . 
 Press Ctrl-Alt simultaneously to break simulation (with the main window selected). 

 
 
• Mean trajectories over M runs are displayed in the graphic windows (with min, max and 

σ± 2  intervals if requested). 
• Mean values along time with standard errors are displayed in the text windows (including 

or excluding extinct trajectories). 
• For group variables, mean distribution over phenotypes and across trajectories are 

displayed. 
• If distribution mode is on, distributions of trajectories at time T are displayed. 
• j-th trajectory whose population size nj(t) is < Ext is declared extinct (at time t), but 

computed to the end (default nj(t)<1). 
• j-th trajectory whose population size nj(t) is > Esc is declared escaped (at time t), but 

computed to the end. 
• Population size is computed as the sum of the values of the relation-variables of the group 

(or model when there are no groups). 
• For each group (or model): probability of extinction along time, mean time to extinction 

(computed over extinct trajectories), probability of escape, mean escape time (computed 
over escape trajectories), growth rates, non extinct population size values, mean population 
structure. 

• Stochastic growth rate = )exp(a  where a is the average of logarithmic growth rates of all 

M trajectories, computed as ∑
=








 −
=

M

j

jj

T
nTn

M
a

1

))0(ln())(ln(1 ; relevant estimator for pure 

environmental stochasticity. 
• Growth rate of the mean pop =  growth rate of the average trajectory, computed as 





 −

T
nTn ))0(ln())(ln(exp  with ∑

=
=

M

j
j tnMtn

1
)(1)( , the average trajectory. 



 35

• Mean growth rate2 = average of growth rates of non extinct trajectories, computed as 

∑
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relevant estimator for pure demographic stochasticity. 
 
 
example1:  model file pass_2s.zen 
 
  ? graph  t  n 
  ? text  t  n 
  ? montecarlo  50  1000  run Monte Carlo simulation 
  (...)         50 time steps, 1000 trajectories 

growth rate2 of the mean pop = 1. 0254 
            growth rate estimator for demographic stochasticity 
 

t          pe(t)      pop(t)      SE     pop*(t)         SE 
10       0.0020        47.1         0.8        47.2          0.8 

 20       0.1410        42.1         1.3        49.0          1.4 
 30       0.3690       42.5         2.0        67.4          2.7 
 40       0.5040        48.8         3.0        98.4          5.2 
 50       0.6160        63.9         4.8       166.3         10.7 

  { probability of extinction, mean pop size, mean pop size over non extinct trajectories 
 

? view cc       coefficient  of reduction in the number of matings 
  cc = 0.95 
  ? change  cc  1     no reduction in number of matings 
  ? montecarlo  50  1000  run Monte Carlo simulation 
  (...)         50 time steps, 1000 trajectories 
  growth rate2 of the mean pop = 1.0812 

probability of extinction at time 50 = 0.084 (much lower than 0.616) 
 
 
example2:  model file pass_2s.zen 
 
  { initial population size is 48 individuals 
  ? graph  t  n 
  ? text  t  n 
  ? montecarlo  50  1000  30 run Monte Carlo simulation 
  (...)         50 time steps, 1000 trajectories, 
            extinction  threshold = 30 
  probability of extinction = 0.760 
    { probability to get less than 30 individual by time 50 
  mean population size at time 50 [SE] = 64 [5] 
  mean population size at time 50 over non extinct trajectories [SE] = 247 [15] 
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  ? change  nm1  24    change initial population size 
  ? change  nm2  24    to 96 individuals 
  ? change  nf1  24 
  ? change  nf2  24 
  ? montecarlo  50  1000  30 
  probability of extinction = 0.121 
    { probability to get less than 30 individual by time 50 
  mean population size at time 50 [SE] = 564 [16] 
  mean population size at time 50 over non extinct trajectories [SE] = 640 [17] 
 
 
example3:  model file pass_2s.ulm 
 
  { initial population size is 48 individuals 
  ? graph  t  n 
  ? montecarlo  50  1000  1  100  run Monte Carlo simulation 
  (...)           50 time steps, 1000 trajectories 
              extinction  threshold = 1 
              escape threshold = 100 
 
  probability of escape = 0.212 
    { probability to get more than 100 individuals by time 50 
  mean time to escape = 21 
  probability of extinction = 0.616 
    { probability to get less than 1 individual by time 50 
  mean time to extinction = 29 
 
 
example4:  model file met_esd.zen 
 
• Click option  in graphic window. Change n1 to n, remove n2, n3, n4. Select options 

MinMax and 2 sigma. Click OK. 
• Click button  to run Monte Carlo simulation (montecarlo 100 10 by default). Mean 

trajectories appear with confidence intervals. 
• Select option Montecarlo | Settings. Change Number of trajectories to 1000. Click OK. 

Click button  to run Monte Carlo simulation (now montecarlo 100 1000). 
 
 
example5:  model file kisdi.zen 
 
  ? graph  s  t     set graphics 
  ? xscale 0  4 

? montecarlo 1000 10  display average evolutionary trajectory in graphic window #1 
       (takes about 10 min) 
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Newvar 
 
 
abbreviation: n 
other name: new 
syntax:   newvar  var expr 
parameters:  var name of a variable 
     expr mathematical expression 
function:  Creation of a new variable with name var, and expression expr. 

System is initialized (init). 
 
 
example:  model file pass_2s.zen 
 
  ? newvar  pe  n < 1   create variable pe = if n < 1 then 1 else 0 
  Init 
  ? graph  t  pe      set graphics 
  ? yscale  0  1     fix bounds in Y 
  Yscale ON [0;1] 
  ? montecarlo 100  1000    
           display pe = probability of extinction along time 

(as average trajectory) 
 
example:  model file kisdi.zen 
 
  ? newvar  di1  groupsumf(gg,n/(ntot*ntot)) 
           create variable di1 = Simpson’s diversity index of group gg 
           (n is phenotype size, ntot is group size) 

? newvar  di2  groupsumf(gg,ln0(n/ntot)/ntot)) 
           create variable di2 = Shannon’s diversity index of group gg 
  ? graph  t  di1  di2    set graphics 
  ? run  100  10     display diversity indexes along time 
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Run     
 
 
abbreviation: r 
syntax:   run T <∆> 
parameters:  T integer > 0, number of time steps (default T = 100) 
     ∆ integer > 0, number of steps for text display (default ∆ = 10) 
function:  Run the models for T time steps with output every ∆ time steps. 
 
see also:   command init 
 

 The run command is parameterized using the Run | Settings option. 
 Graphics are parameterized using the graphic windows Settings option . 
 Results are parameterized using the text windows Settings option . 
 Press Ctrl-Alt simultaneously to break simulation (with the main window selected). 

 
 
• Trajectories are displayed in graphic windows, numerical values are displayed in text 

windows. For group variables, distributions across phenotypes are displayed along time. 

• Growth rates of the models from time t = 0T : 



 −+=λ T

TnTTn ))(ln())(ln(exp 00  , with n 

the number (or density) of individuals along time (sum of relation-variables values). 

• Growth rates of groups from time t = 0T : 



 −+=λ T

TgTTg ))(ln())(ln(exp 00 , with g the 

number of individuals in the group along time (sum of group relation-variables values). 

• Growth rates of phenotypes in groups: 



 −= T

DCL )ln(exp , with C the number of 

phenotypes created (born by mutation) and D the number of phenotypes destroyed (extinct 
by selection) in the T time steps. 

• Life expectancies of phenotypes in groups: mean value of CD tt −  over phenotypes created 
at time Ct  which were destroyed at time Dt . 

 
 
example1:  model file regis.zen 
 
  ? change  r  110 
  ? graph  n1  n2   set graphics 
  ? xscale  0  140   fix bounds in X 
  ? yscale  0  2    fix bounds in Y 
  ? addgraph    Addgraph ON 
  ? run  10000  1000  run 10000 time steps (∆ = 1000) 

? run       run 10000 more time steps 
display strange attractor 
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example2:  model file kisdi.zen 
 
  ? run 100   run 100 time steps from t = 0 
 

Model kisdi -> pop = 962.0 
growth rate from [t = 0] -> 0.999613 

Group gg -> pop = 4390  nb_pheno = 128 
growth of group from [t = 0] -> 1.014903 
life expectancy of phenotypes from [t = 0] -> 0.8435 
growth rate of phenotypes from [t = 0] -> 1.049634 

 
  ? run 100  run 100 more time steps 
 

Model kisdi -> pop = 533.0 
   growth rate from [t = 0] -> 0.996859 
   growth rate from [t = 100] -> 0.994112 

Group gg -> pop = 4258  nb_pheno = 159 
   growth of group from [t = 0] -> 1.007270 

growth of group from [t = 100] -> 0.999695 
life expectancy of phenotypes from [t = 0] -> 1.0745 
life expectancy of phenotypes from [t = 100] -> 1.3087 
growth rate of phenotypes from [t = 100] -> 1.034936 
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Savegraph                          graph 
 
 
abbreviation: ! 
other name: save 
syntax:   save xxx.bmp 
parameter:  xxx.bmp name of graphic file 
function:  Store graphic window  in bitmap file xxx.bmp. 
     The index of the graphic window to be stored can be specified  

using the window command. 
     The bmp file can be later modified, converted to jpg or printed. 
 

 The savegraph command is useful in command files. 
 Use alternatively the File | Save option  in each graphic window. 

 
 
note:    In case of superimposed graphics (addgraph command), graphics are saved 

using a fixed window size. 
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Text                         on/off 
 
 
abbreviation: t 
syntax:   text var1 ... varN 
parameters:  var1 ... varN names of variables (not group-variables) 
function: If on, display values of variables var1, ..., varN in the main window, 

as the run or montecarlo command is executed. 
default:   on 
 
note:    Values of group variables are not displayed, since they are multivalued 
     (see command view, option Variables | All) . 
 

 Button  allows to open up to 6 text windows, numbered #1 to #6, which can be 
parameterized using the Settings option . 

 For the Monte Carlo simulation, no more than 1000 rows can be displayed. The 
Sampling interval should be adjusted in accordance with the number of time steps. 

 The text windows can be saved using the File | Save option . 
 Command text is totally independent of the text windows, though the purpose is 

similar. 
 
 
example1:  model file regis.zen 
 
• Click  to open text window #1, then  to run the model 100 time steps. Values of time 

t and variables n1, n2 are displayed in the text window (every 10 time steps). 
• Click the Settings option , change n1 to n, remove n2. Change Sampling interval to 20. 

Click OK. 
• Click  to run the model 100 more time steps. Values of time t and variable n are 

displayed every 20 time steps. 
 
example2:  model file pass_2s.zen 
 
• Select option Montecarlo | Settings. Change Number of trajectories to 1000 (Number of 

time steps is 100 by default), click OK. 
• Click  to open text window #1. Click the Settings option , change nm1 to n, remove 

nm2, nf1, nf2. Click OK. 
• Click  to run the Monte Carlo simulation. Values of time t , mean population size (n) 

with standard error (SE), mean population size over non extinct trajectories (n*) with 
standard error (SE) are displayed in the text window. 
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View     
 
 
abbreviation: v 
syntax:   view o1 ... oN 
parameters:  o1 ... oN   names of ZEN objects 

(variable, relation, function, group, adaptive trait) 
function:  Display initial and actual values of objects o1, ..., oN. 
syntax:   view 
function:  Display all ZEN objects. 
 

 Option  provides a window with initial values, actual values and expressions of all 
variables. Expressions can be modified by selecting the corresponding field, 
modifying the expression, and typing <return>. Click in the status bar to list variables 
according to Evaluation order or Alphabetic order. 

 Option Variables | All gives all ZEN objects as a hierarchical tree, with values of 
group variables and adaptive traits across phenotypes. Click in the status bar to sort 
objects according to date of creation, number of individuals in phenotype, and values. 

 Option Variables | Calculator is a desk calculator allowing the computation of 
mathematical expressions possibly involving ZEN variables. 

 
 
example:  model file kisdi.zen 
 
• Click . Click  to run the model 100 time steps. Select option Variables | All. Select 

Mutations, then select s. Values of the adaptive trait s over all phenotypes present at time t 
= 100 are displayed: 

 
Mutation s = 1 

    trigger : t1 
    occur   : 1 
     number  : binomf(n,mu) 
    distrib : min(max(gaussf(s,sigma),s_min),s_max) 
    replace : 0 
    concern : n 
 

Pheno#3942 created from #379 at t = 100   nb = 1 -> 0.023% 
    s = 0.9794 

Pheno#3941 created from #379 at t = 100   nb = 1 -> 0.023% 
    s = 0.9747 
   (…) 
 
• Click  to run the model 100 more time steps. Click into the Variable | All panel to 

update. Values of the adaptive trait s over all phenotypes present at time t = 200 are 
displayed: 

 
Pheno#7829 created from #2002 at t = 200   nb = 1 -> 0.023% 

    s = 1.047 
Pheno#7828 created from #2002 at t = 200   nb = 1 -> 0.023% 

    s = 1.017 
   (…) 
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Window                      on/off  graph 
 
 
abbreviation: w 
syntax:   window  i 
parameter:  i integer in [1, …, 6], refer to graphic window #i 
function:  Select or create graphic window #i, to which will apply all subsequent  

graphic commands: 
  addgraph 
  distribution 

erase 
  line 
  graph 

savegraph 
xscale 
yscale 

 
default:   i = 1 
 

 Useful to store several graphic windows using command files. 
 
 
example:  model file ferriere1.zen 
 

 
? graph  tt  ux        Parameterize graphics (for window #1 by default)  
? xscale  0  4000 
Xscale ON  [0, 4000] (graphic window #1) 
? yscale  0  200 
Yscale ON  [0, 200] (graphic window #1) 
? window  2        Create and select graphic window #2 
Graphic window #2 selected 
? graph  tt  uy        Parameterize graphics for window #2 
? xscale  0  4000 
Xscale ON  [0, 4000] (graphic window #2) 
? yscale  0  200 
Yscale ON  [0, 200] (graphic window #2) 
? run  200000  1000      Run model 
? savegraph  uy.bmp     Save graphics in file uy.bmp for window #2 
? window  1        Select graphic window #1 
Graphic window #1 selected 
? savegraph  ux.bmp     Save graphics in file ux.bmp for window #1 
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Xscale                       on/off  graph 
 
 
abbreviation: x 
syntax:   xscale <xmin> <xmax> 
parameters:  xmin xmax real numbers, bounds of graphics on the X axis 
function:  Fix bounds xmin and xmax for abscissas (default: actual values). 
default:   off (automatic scaling on the  X axis) 
see also:   yscale, addgraph 
 

 Use alternatively option Fix Xscale in graphic windows Settings . 
 Graphic window #i can be selected using the window command. 

 
 
 
Yscale                       on/off  graph 
 
 
abbreviation: y 
syntax:   yscale <ymin> <ymax> 
parameters:  ymin ymax real numbers, bounds of graphics on the Y axis 
function:  Fix bounds ymin and ymax for ordinates (default: actual values). 
default:   off (automatic scaling on the Y axis) 
see also:   xscale, addgraph 
 

 Use alternatively option Fix Yscale in graphic windows Settings . 
 Graphic window #i can be selected using the window command. 
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5. MATHEMATICAL FUNCTIONS 
 

Binary operators 
 
+ * / - ^ (power) 
 
\  real modulo: a \ b = a - b*trunc(a/b) 
  examples: 7.4 \ 2 = 1.4, 7 \ 2 = 1 
 
@  convolution operator: F @ n = sum of n samples of distribution F 
  examples: ber(p) @ n = binomf(n,p), poisson(f) @ n = poissonf(n,f) 
 
<  a < b is 1 if a is strictly less than b, 0 otherwise 
>  a > b is 1 if a is strictly greater than b, 0 otherwise 
 
 

Unary operators 
 
-    minus 
sqrt   square root 
abs   absolute value 
trunc   integer part 
    examples: trunc(3.5) = 3, trunc(3.8) = 3, trunc(-3.5) = -4, trunc(-3.8) = -4 
round  nearest integer 
    examples: round(3.2) = 3, round(3.6) = 4, round(-3.2) = -3, round(-3.6) = -4 
 
ln    neperian logarithm 
ln0   neperian logarithm defined in 0 by ln0(0) = 0 
log   decimal logarithm 
exp   exponential 
fact   factorial 
 
cos    cosinus     acos   inverse cosinus 
sin   sinus      asin   inverse sinus 
tan   tangent     atan   inverse tangent 
 
 

Other operators 
 
min   min(a1, ..., an) = minimum of the ai 
max   max(a1, ..., an) = maximum of the ai 
 
if    conditional: if(A,B,C) =  if 0≠A  then B else C 
    examples: if(2<3,1,2) = 1, if(trunc(2.5)-2,1,2) = 2 

gratef  gratef(x) = growth rate of variable x at time T = 



 −

T
xTx ))0(ln())(ln(exp  

bicof   bicof(n,p) = binomial coefficient C(n,p) 
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Random functions: continuous distributions 

 
rand  rand(a)  uniform distribution over [0, a] 
   domain:  a > 0 
   range:  [0, a] 
   mean:  a/2 
   variance: a2/12 
   density:  (1/a)*characteristic function of [0, a] 
 
gaussf gaussf(m,s)  gaussian distribution with mean m and standard deviation s 
   domain:  s > 0 
   range:  R 

   density:  ( ) 



 −−

π

2

2
1exp

2
1

s
mx

s
 

 
gauss  gauss(s)  gaussian distribution with mean 0 and standard deviation s 
   gauss(s) = gaussf(0,s) 
 
gamm gamm(a) gamma distribution with parameter a 
   domain:  a > 0 
   range:  R+

* 
   mean:  a 
   variance: a 
   density:  (1/Γ(a)) xa-1e-x 
 
betaf  betaf(a,b) beta distribution with parameters a and b 
   domain:  a > 0, b > 0 
   range:  [0, 1] 
   mean:  a/(a+b) 
   variance: ab/((a+b+1)(a+b)2) 
   density:  (Γ(a+b)/Γ(a)Γ(b)) xa-1(1 - x)b-1e-x 
 
beta1f beta1f(m,s)  variant of beta distribution with mean m and standard deviation s 
   domain:  m > 0, 0 < s2 < m(1 - m) 
   range:  [0, 1] 
   mean:  m 
   variance: s2 

   remark:  the distribution is bell-shaped for small s and U-shaped for large s 
 
expo  expo(a)  exponential distribution with parameter a 
   domain:  a > 0 
   range:  R+

* 
   mean:  1/a 
   variance: 1/a2 

   density:  aexp(-ax) 

 
lognormf lognormf(m,s) lognormal distribution with mean m and standard deviation s 
   domain:  m > 0, s > 0 
   range:  R+

* 
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Random functions: integer distributions 
 
ber  ber(p)  Bernoulli samples: P(X = 0) = 1 - p, P(X = 1) = p 
   domain:  10 ≤≤ p  
   range:  {0, 1} 
   mean:  p 
   variance: p(1 - p) 
   generating function:  f(s) = (1-p) + ps 
 
binomf binomf(n,p)  binomial distribution: P(X = k) = C(n,k)pk(1 - p)n-k 
   domain:  0≥n , 10 ≤≤ p  
   range:  {0, 1, ..., n} 
   mean:  np 
   variance: np(1 - p) 
   generating function:  f(s) = ((1-p) + ps)n 
 
nbinomf nbinomf(r,p) negative binomial distribution: P(X = k) = C(k+r-1,r-1)pr(1 - p)k 
   domain:  r real > 0, 10 ≤≤ p  
   range:  N  
   mean:  r (1 - p)/p 
   variance: r (1 - p)/p2 
 
nbinom1f nbinom1f(m,s)  negative binomial distribution, mean m, standard deviation s 
   domain:  0 < m < s2 
   range:  N  
   mean:  m 
   variance: s2 
 
poisson poisson(m) Poisson distribution with mean m: P(X = k) = e-m mk/k! 
   domain:  0≥m  
   range:  N 
   mean:  m 
   variance: m 
   generating function:  f(s) = exp(m(s-1)) 
poissonf  poissonf(n,m) give the sum of n samples of poisson(m) 
 
geom  geom(p)  geometric distribution with parameter p: P(X = k) = p(1 - p)k 
   domain:  10 ≤≤ p  
   range:  N 
   mean:  (1 - p)/p 
   variance: (1 - p)/p2 
   generating function:  f(s) = p + p(1 - p)s/(1 - (1 - p)s) 
 
tabf  tabf(p0, ..., pn) tabulated distribution: P(X = k) = if nk ≤ then pk else 0 
   domain:  10 ≤≤ kp , p0 + ... + pn = 1 
   range:  {0, 1, ..., n} 
   mean:  m = f '(1) = p1 + 2p2 + ... + npn 
   variance: f ''(1) + m - m2 
   generating function:  f(s) = p0 + p1s + ... + pnsn 



 48

From continuous time to discrete time 
 
 
Models of adaptive dynamics are often given as birth-death processes in continuous time, 
while ZEN works in discrete time. A special function bdf is provided to handle the discrete 
time under which a continuous birth-death process is observed. 
 
bdf   bdf(n,b,d,∆) 

n = number of individuals, b = birth rate, d = death rate, ∆ = observation interval. 
 
Example:  model file kisdi.zen (see p. 11) 
 

defvar delta = 0.1    { observation interval 
 

defgroup gg(1)     { declaration of group gg 
rel: rel 
mut: s 
 
defrel rel 
n = bdf(n,ra,rb,delta)    { the relation replaces n = poissonf(n,f) 
 
( … ) 
 
defvar ra = r(s)      { growth term, birth rate 
 
defvar rb = groupsumf(gg,alpha(focalf(s),s))  { interaction term, death rate 

 
The bdf distribution is used in the same way as the poissonf distribution: the number n′  of 
individuals in the next time step is computed as a sum of n  trials. The formulas given below 
have been developed by Amaury Lambert. 
 
Let tZ  denote the stochastic population size at time t , sampled from the continuous time 
birth-death process, with ∆  the observation interval. Let dbr −=  denote the rate of increase, 

)0(0 == tZPp  the probability of reaching 0 individuals at time t , )0( ≠== ttk ZkZPp , the 
probability of having k  individuals at time t , conditional upon non extinction. We compute 

0p  and ρρ−= −1)1( k
kp  according to 

1) 0<r : ∆

∆

−
−= r

r

bed
edp )1(

0 , ∆−
−=ρ rbed

bd , 

2) 0=r : ∆+
∆= b

bp 10 , ∆+=ρ b1
1 , 

3) 0>r : ∆−

∆−

−
−= r

r
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edp )1(

0 , ∆−

∆−

−
−=ρ r

r

deb
edb )( . 

 
The sum ),,,( ∆= dbnbdfS  is then computed as: 

S := 0 
For i := 1 to n do 

If Ber(p0) = 0 then S := S + Geom(ρ) + 1 
  Return S. 
Ber is the Bernoulli distribution, Geom the geometric distribution as defined p. 47. 
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For constant birth and death rates, this computation is exact: whatever ∆ , the population size 
computed from function bdf will have the same distribution as the continuous process. But in 
most models b  and d  vary along time, and the value of the observation interval ∆  has to be 
chosen accordingly. A possibility is to compute an adaptive ∆  so as to correctly track the 
continuous process (see model ferriere1.zen for an example). 
 
How to chose the observation interval ∆ ? 
The birth-death process in continuous time is simulated by drawing iteratively a single birth 
or death event affecting a randomly chosen individual: the date of the next event is computed 

according to an exponential distribution with mean 
dbn +

×
11 , and when the event has 

occurred, population size goes from n  to 1±=′ nn . When observing the continuous time 
birth-death process at discrete time intervals, several events can occur in a single time step ∆ , 
driving population size from n  to n′ . During the time step ∆  an average of 

[ ]))(exp(1 ∆+−− dbn  events occur. For small ∆ , about ∆+ )( dbn  events occur in average in 

a time step. As a result, the value 
dbn

k
+

×=∆
1  with nk ≤  can track variations in population 

size of the order knn ±≈′ . This value of ∆  can however be time consuming for small k , 

while the value 
db +

=∆
1  can lead to numerical instability. A compromise has to be found 

between efficiency and accuracy. 
 
 
 

Functions for evolutionary dynamics 
 

Phenotypes 
 
The following functions allow to retrieve information from a group G containing P 
phenotypes. They are to be used outside the declaration of the concerned group. 
 

x is a local group variable declared in group G 
 
groupcardf(G)  number P of phenotypes in group G. 
 
grouppopf(G)   total number N of individuals in group G, with P phenotypes 

and )(in  individuals in each phenotype (i): ∑
=

=
P

i

inN
1

)( . 

 
groupgrowthf(G) growth rate of phenotypes in group G, computed at time t as 

       






 −

t
DBLn

exp , where B is the number of phenotypes created from t = 1  

and D is the number of destroyed phenotypes. 
 
grouplifetimef(G) average life duration of phenotypes in group G. 
 
groupmeanf(x)  mean value m of variable x over all individuals in group G,  

with )(in  individuals in phenotype (i) and )(ix  the value of x in 
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phenotype (i): ∑
=

=
P

i

ii nxNm
1

)()(1  

 
groupmaxf(x)   maximum value a of variable x over all phenotypes (i) in group G: 
       )(max )(i

i
xa =  

 
groupminf(x)   minimum value b of variable x over all phenotypes (i) in group G: 
       )(min )(i

i
xb =  

 
 

Ecological interactions 
 
The following functions allow to compute ecological interactions between phenotypes within 
a group or across groups. 
 
groupsumf(G,exp)  value S of the sum of expression exp over all individuals in group G, 

with )(in  individuals in phenotype (i) and )(ia  the value of exp in 

phenotype (i): )(

1

)( i
P

i

i naS ∑
=

=  

 
 
groupsum1f(G,exp)  value S1 of the sum of expression exp over all phenotypes in group G, 

with )(ia  the value of exp in phenotype (i): ∑
=

=
P

i

iaS
1

)(
1

 

 
focalf(s)  value of group variable s, or adaptive trait s, 

from the focal phenotype (i) in group G 
 

note: function focalf is not to be used outside of a group. 
 
For example, assume that ecological interactions between 2 phenotypes in group G, with 
adaptive traits s1 and s2, are given by a function α(s1,s2). Then the environment perceived 
(the selection pressure experienced) by a focal phenotype (i) with trait )(is  is computed as  
 

)()(

1

)()( ),( ij
P

j

ii nssA ∑
=

α= . 

 
The corresponding declaration within group G with adaptive trait s is 
 

defvar a = groupsumf(g, alpha(focalf(s),s) 
 
Function alpha is defined outside group G as 
 
  deffun alpha(s1,s2) = (…) 
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Triggering of mutations 
 
magicf(xa, …, xz)  xa, …, xz variables 
 
Any variable that is not a constant or a relation-variable can trigger mutations, and this is used 
to control for the triggering of mutations inside a time step (see defmut and the trigger 
keyword in section 3). Let u be a triggering variable. The hierarchy of ZEN variables (see the 
update procedure in section 3) is constructed in such a way that the mutations corresponding 
to u are triggered as soon as u is updated, and before any variable depending on u is updated. 
The aim of the magicf function is to help with this feature. When u is used as a triggering 
variable, declaring 
 
  defvar u = magicf(xa, …, xz) 
 
ensures that u is updated as soon as variables xa, …, xz have been updated (as well as all 
variables lower than xa, …, xz in the hierarchy), and not before. Any variable depending on 
xa, …, xz (as well as any variable above xa, …, xz in the hierarchy) will be updated after u. 
 
 

Date of creation of phenotype 
 
datef(x)     date of creation of focal phenotype, x any group variable 
       the date is the one given by option Phenotypes in the Variable | All panel 
 
note: function datef is not to be used outside of the group scope. Any variable pertaining to 
the group may be used. 
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TECHNICAL NOTICE 
 
 
Computer        PC, MAC 
System         Windows, Linux, MAC OSX 
Minimal memory required   128 M 
Programming language    Object Pascal – Borland Delphi 6 & Kylix 
Source code size      ~ 13000 lines 
Exec code size      ~ 800 K 

+ 4000 K runtime library qtintf.dll 
 
 
Program bounds 
 
General 
maximum number of models in the same model file  5 
maximum size of models (number of relations)    100 
maximum number of relations (total)       500 
maximum number of variables         5000 
 
Evolutionary 
maximum number of groups          10 
maximum size of groups (number of relations)    30 
maximum number of adaptive traits per group    20 
maximum number of variables per group      200 
maximum number of coexisting phenotypes     20000 
 
Graphics 
maximum number of graphics windows      6 
maximum number of trajectories per window    4 
best graphic resolution in number of time steps    ≤ 10000 
resolution for the distribution of phenotypes     600×600 
 
Text 
maximum number of text windows        6 
maximum number of variables per window     16 (4 for Monte Carlo) 
maximum number of lines per window      10000 for Monte Carlo 
 
File 
maximum number of output text files       5 
maximum number of variables per file      10 
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ZEN DISTRIBUTIONS 
 
 
 
 
Web site  http://www.biologie.ens.fr/~legendre/zen/zen.html 
 
 
 
 
Computer / System DOWNLOAD Comments 

 
PC Windows 

 
Self-extracting file 

autozen.exe 
 

 
Program file 

zen.exe 
 

The Windows distribution also contains 
a console (no graphics) version 

zenc.exe 
 

 
PC Linux 

 
Compressed archive 

zen.tar.gz 
expanded using 

command 
tar -xzf zen.tar.gz 

 

 
Program file 

zen 
 

For installation, consult file 
ZenLinuxInstall.txt 

 
The Linux version is identical to the 

Windows version. 
 

The Linux distribution also contains a 
console (no graphics) version 

zenc 
 

 
MAC OS X 

 

 
Compressed archive 

zenc_mac.zip 
 

 
Program file 

zenc 
 

Console version (no graphics) 
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