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Cellular Transport

Extra and Intracellular
communication

Intermittent transport:
diffusion and active
motion alternation

Active motion along
microtubules (MTs) via
molecular motors
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Intermittent Search Mechanism

Alternation between diffusion and directed motion to a target

mRNA granules to synaptic targets along a dendrite.

DNA-viruses to nuclear pores
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Early steps of viral infection

1-2: extracellular diffusion and
membrane exploring

3: Entry

3-4: Intermittent transport:
diffusion and directed motion
along MTs

4: Nuclear delivery of DNA

Figure: G. Seisengerger et al.,
Science 294, 1929 (2001).
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Motivations

Deriving drift accounting for intermittent transport →
Langevin description of trajectories

Application to viral infection analysis: possible degradation in
cytoplasm → Mean Time τe and Probability Pe a virus enters
a nuclear pore ?
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Langevin Description

Left-Hand side: Intermittent
Dynamics

ẋ =
√

2Dẇ Free Particle,

ẋ = V Bound Particle.

Right-Hand side: Langevin
Dynamics

ẋ = b(x) +
√

2Dẇ

+killing field k(x)→
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Fokker-Planck Equation

Survival probability:p(x, y, t) = Pr{X (t) ∈ x + dx|X (0) = y }

Forward Fokker-Planck Equation

∂tp = D∆p −∇ (p∇b (x))− k (x) p

boundary conditions: p = 0 on ∂Ωa (nuclear pores) and ∂p
∂n = 0

on ∂Ω− ∂Ωa.
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Probality Pe and mean time τe to a nuclear pore

Pe and τe

Pe = 1−
∫ ∞

0

∫
Ω

k(x)p̃(x, t)dxdt

τe =

∫∞
0

∫
Ω p̃(x, t)dxdt −

∫∞
0

∫
Ω k(x)tp̃(x, t)dxdt

Pe

where p̃(x, t) =
∫

Ω p(x, y, t)pi (y)dy
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Asymptotic Results

Nuclear pores (∂Ωa)= small holes → |∂Ωa|
|∂Ω| = ε� 1

Asymptotic Results in ε

Pe =
1
|∂Ω|

R
∂Ω e−

Φ(x)
D dSx

ln( 1
ε)

Dπ

R
Ω e−

Φ(x)
D k(x)dx+ 1

|∂Ω|
R
∂Ω e−

Φ(x)
D dSx

,

τe =
ln( 1

ε)
Dπ

R
Ω e−

Φ(x)
D dx

ln( 1
ε)

Dπ

R
Ω e−

Φ(x)
D k(x)dx+ 1

|∂Ω|
R
∂Ω e−

Φ(x)
D dSx

,

for b = −∇Φ

PROBLEM: b?
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Principle

MFPTs from x0 to xf are
equal. In the small diffusion
limit:

||xf − x0||
b(x0)

= τ(x0) + tm
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Cell representation

Two-dimensional radial cell
with N uniformly distributed
microtubules:

Neurite cross section with N
thin cylindrical MTs
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Two-dimensional representation

In the small diffusion limit

r0 − rf
b(r0)

=
r0 − (r̄(r0)− dm)

b(r0)
= τ(r0) + tm
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MFPT to a microtubule

virus!" r

!" a

Reflecting boundary

Absorbing boundary

R

!" a

#
binding site

brownian motion

Dynkin’s system

D∆u(r , θ) = −1 in Ω

u(r , 0) = u(r ,Θ) = 0,

∂u

∂r
(R, θ) = 0.

For Θ << 1

τ(r0) =
1

Θ

∫ Θ

0
u(r0, θ)dθ ≈ r2

0

Θ2

12D
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Mean binding radius (1)

Heat equation

D∆p(r , θ, t) =
∂p

∂t
(r , θ, t) in Ω

p(r , 0, t) = p(r ,Θ), t = 0,

∂p

∂r
(R, θ, t) = 0.

Indeed,

r̄(r0) = 1
Θ

∫ Θ
0

∫ R
0 rε(r |r0, θ0)dθ0

with ε(r |r0, θ0) =
∫∞

0 j(r , t|r0, θ0)dt = −D
∫∞

0
∂p
∂n (r , t|r0, θ0)dt.
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Mean binding radius (2)
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Dotted line: Theoretical exit radius 
distribution

Solid line:  Numerical distribution 
(Brownian trajectories)

initial radius r0=100

For Θ << 1

r̄(r0) ≈ r0(1 +
Θ2

12
)

Thibault Lagache and David Holcman Quantifying Intermittent Transport in Cell Cytoplasm



Introduction
Viral Dynamics Modelling

Drift Computation
Application to Viral Infection Analysis

Conclusion
Perspectives

Principle
Cell Representation
Two-dimensional radial case
Cylindrical neurite case

Results

Effective drift amplitude

b(r0) =
r0 − (r̄(r0)− dm)

τ(r0) + tm
=

dm − r0
Θ2

12

tm + r2
0

Θ2

12D

.

Φ(r) = dm
√

12Dtm
tmΘ arctan

(
Θr√

12Dtm

)
− D

2 ln
(
12Dtm + r2Θ2

)

0.010

0.006

0.008

0

0.002

0.004

191715131197531

Steady State 
Distribution

Radius (µm)

Solid line: Numerical Distribution  
(intermittent Brownian trajectories)
 
Dotted line: theoretical distribution obtained 
with Langevin description
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Cylindrical neurite case

Cross section of a neurite

In the small diffusion limit

b =
dm

tm + τ

with τ ≈ 1
λ1

=
|Ω|ln( 1

ε)
2πN the

MFPT to a microtubule.
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with the two-dimensional potential

Φ(r) = dm
√

12Dtm
tmΘ arctan

(
Θr√

12Dtm

)
− D

2 ln
(
12Dtm + r2Θ2

)

Probability and mean time to a nuclear pore

Pe ≈ dm

dm + K

(
1− Kδ (dmδ + Dtm)

12Dtmdm (dm + K )
Θ2

)
τe ≈ K

k (dm + K )

(
1 +

δ (dmδ + Dtm)

12Dtm (dm + K )
Θ2

)
.

where K = 2k0δtm ln
(

1
ε

)
and α =

(
1 + R+δ

dm

)
1

24 .
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Results (2)

with biological data:

Probability and mean time to a nuclear pore

Pe ≈ 95%

τe ≈ 3min.

coherent with the reported total entry time of
15min. (G. Seisengerger et al., Science 294, 1929 (2001)).

without drift: τe ≈ 15min.
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Conclusion

General framework to analyze intermittent search processes

Application to viral entry modelling
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Perspectives

Other steps of viral infection (endosome escape . . . )

Asymptotics for structured targets (many nuclear pores on a
spherical nuclear pore . . . )
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Asymptotics for structured targets (pure diffusion b = 0)

n disks (nuclear pores) of radius η located on a microdomain
(capacitance CS : for a spherical nucleus of radius δ, CS = 4πδ)

Old Asymptotics

τe =

(
|Ω|

4Dnη

)
1 +

(R
Ω k(x)dx
4Dnη

)
Problem:
limn→∞,nε2�1 τe = 0

New Asymptotics

τe =

(
|Ω|
DC̃

)
1 +

(R
Ω k(x)dx

DC̃

)
where 1

C̃
≈ 1

CS
+ 1

4nη

New asymptotics with a drift??
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The lab

http://www.biologie.ens.fr/bcsmcbs/
lagache@biologie.ens.fr
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Negative drift

Noise due to reflecting external membrane
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Steady state 
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Dashed line: Theoretical Langevin 
distribution

Solid line: Intermittent Brownian 
simulations 
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Limit radius

In cell of radius 50µm, positive drift for dm ≥ 1µm
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Escape through a small hole (1)

How long it takes for a brownian
particle confined to a domain Ω to
escape through a small opening ∂Ωa

(ε = |∂Ωa|
|∂Ω| << 1)?

Mean escape time

τ =
|Ω|
πD

ln

(
1

ε

)
(2-dimensional case),

τ =
|Ω|
4εD

(3-dimensional case),
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Escape through a small hole (2)

Dynkin’s system

∆u(x) = − 1

D
in Ω

u(x) = 0 on ∂Ωa

∂u

∂n
(x) = 0 on ∂Ωr = ∂Ω− ∂Ωa.

Neumann Function N (x, ξ)

∆N (x, ξ) = −δ(x− ξ) for x, ξ ∈ Ω

∂N
∂n

(x, ξ) = − 1

|∂Ω|
for x ∈ ∂Ω, ξ ∈ Ω.
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Escape through a small hole (3)

∫
Ω
N (x, ξ)∆u(x)−∆N (x, ξ)u(x)dx =

∫
∂Ωa

N (x, ξ)
∂u

∂n
(x)dx

+
1

|∂Ω|

∫
∂Ω

u(x)dx

and∫
Ω
N (x, ξ)∆u(x)−∆N (x, ξ)u(x)dx = u(ξ)− 1

D

∫
Ω
N (x, ξ)dx

thus

u(ξ)− 1

D

∫
Ω
N (x, ξ)dx =

∫
∂Ωa

N (x, ξ)
∂u

∂n
(x)dx +

1

|∂Ω|

∫
∂Ω

u(x)dx
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Escape through a small hole (4)

For ξ ∈ ∂Ωa, C0 the constant leading order in ε of u(x) and
g(s) = g0√

ε2−s2
the local expansion of ∂u

∂n on the boundary:

− 1

D

∫
Ω
N (x, ξ)dx =

∫
∂Ωa

N (s)g(s)ds + C0

N (s) = 1
4π|s| + regular function, − 1

D

∫
ΩN (x, ξ)dx is bounded

and g0 = |Ω|
2πεD (compatibility condition). Thus:

u(x) ≈ C0 =
|Ω|
4εD
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