Modélisation des Trajectoires Virales dans le Cytoplasme Un Problème d' "Échappée Belle"

Thibault Lagache

École Normale Supérieure, Université Paris Diderot

11 Février 2010

Organisation Cellulaire et Transport

Une organisation complexe de la cellule

Réseau de microtubules Transport actif sur les microtubules

- Transport Intermittent (diffusion/transport actif)
- Cadre général pour étudier ces trajectoires intermittentes?
- Premier Temps de Passage Moyen (PTPM) et Probabilité qu'un virus atteigne un pore nucléaire?

Structure d'un virus

э

Vecteurs Viraux en Thérapie Génique

VECTEURS VIRAUX VECTEURS SYNTHÉTIQUES

1-100	<i>efficacité in vitro</i> (gènes/cellule)	10 ⁴ -10 ⁶
3 - 8	taille du génome (kbp)	> 150
30-100 nm	taille de la particule	variable

Peu efficaces!

Étapes précoces de l'infection virale

Peu de vecteurs synthétiques atteignent un pore nucléaire!

- Modélisation des trajectoires virales
- Atteindre un pore nucléaire= Problème d' "échappée belle"
- Prise en compte de plusieurs pores

• Modélisation des trajectoires virales

- Atteindre un pore nucléaire= Problème d' "échappée belle"
- Prise en compte de plusieurs pores

Trajectoires Virales: Biologie

- Mouvement intermittent (Diffusion ⇔Transport actif)
- Transport actif grâce à des moteurs moléculaires le long des microtubules
- Les virus doivent atteindre un pore nucléaire 🦽

Modélisation des Trajectoires Intermittentes

Dynamique Intermittente

$$\dot{\mathbf{x}} = \sqrt{2D} \dot{\mathbf{w}}$$
 Virus Libre,

$$\dot{\mathbf{x}}~=~\mathbf{V}$$
 Virus Transporté .

Thibault Lagache Modélisation des Trajectoires Virales dans le Cytoplasme

Description de Langevin des Trajectoires

 $\dot{\mathbf{x}} = \mathbf{b}(\mathbf{x}) + \sqrt{2D}\dot{\mathbf{w}}$

+taux de dégradation $k(\mathbf{x})$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

Premier temps de passage moyen (PTPM) de x_0 à x_f égal pour les trajectoires intermittente et homogénéisée

Pour une diffusion $D \ll 1$

$$\frac{||\mathbf{x}_{\mathbf{f}} - \mathbf{x}_{\mathbf{0}}||}{\mathbf{b}(\mathbf{x}_{\mathbf{0}})} = \tau(\mathbf{x}_{\mathbf{0}}) + t_{m}$$

Thibault Lagache Modélisation des Trajectoires Virales dans le Cytoplasme

Représentation de la Cellule

Cellule radiale 2-dimensionnelle avec N microtubules uniformément distribuées ($\Theta = 2\pi/N$):

Étape fondamentale

Pour une diffusion $D\ll 1$

$$\frac{r_0 - r_f}{b(r_0)} = \frac{r_0 - (\bar{r}(r_0) - d_m)}{b(r_0)} = \tau(r_0) + t_m$$

1 ▶ ▲

PTPM à un microtubule

$u(r, \theta) = PTPM$ à un microtubule

Reflecting boundary

Équation de Dynkin				
$D\Delta u(r, \theta)$	=	-1 in $ ilde{\Omega}$		
$u(r,0)=u(r,\Theta)$	=	0,		
$\frac{\partial u}{\partial r}(R,\theta)$	=	0.		

イロン 不同 とくほう イロン

3

Absorbing boundary

Pour $\Theta << 1$

$$\tau(r_0) = \frac{1}{\Theta} \int_0^{\Theta} u(r_0, \theta) d\theta \approx r_0^2 \frac{\Theta^2}{12D}$$

Équation de la chaleur

$$D\Delta p(r, \theta, t) = \frac{\partial p}{\partial t}(r, \theta, t) \text{ in } \tilde{\Omega}$$
$$p(r, 0, t) = p(r, \Theta), t = 0,$$
$$\frac{\partial p}{\partial r}(R, \theta, t) = 0.$$

Distribution du rayon d'attache: $\epsilon(r|r_0, \theta_0) = \int_0^\infty j(r, t|r_0, \theta_0) dt = -D \int_0^\infty \frac{\partial p}{\partial n}(r, t|r_0, \theta_0) dt.$

Rayon d'attache moyen: $\bar{r}(r_0) = \frac{1}{\Theta} \int_0^{\Theta} \int_0^R r \epsilon(r | r_0, \theta_0) d\theta_0$

Test Contre des Simulations Browniennes et Asymptotique pour $\Theta \ll 1$

Pour $\Theta << 1$

$$\bar{r}(r_0)\approx r_0(1+\frac{\Theta^2}{12})$$

(日)

3

Dérive Effective: Test Contre des Simulations Browniennes

$$b(r_0) = \frac{r_0 - (\bar{r}(r_0) - d_m)}{\tau(r_0) + t_m} = \frac{d_m - r_0 \frac{\Theta^2}{12}}{t_m + r_0^2 \frac{\Theta^2}{12D}}.$$

$$\Phi(r) = \frac{d_m \sqrt{12Dt_m}}{t_m \Theta} \arctan\left(\frac{\Theta r}{\sqrt{12Dt_m}}\right) - \frac{D}{2} \ln\left(12Dt_m + r^2\Theta^2\right)$$

Dérive Effective: Test Contre des Simulations Browniennes

$$b(r_0) = \frac{r_0 - (\bar{r}(r_0) - d_m)}{\tau(r_0) + t_m} = \frac{d_m - r_0 \frac{\Theta^2}{12}}{t_m + r_0^2 \frac{\Theta^2}{12D}}.$$
$$\Phi(r) = \frac{d_m \sqrt{12Dt_m}}{t_m \Theta} \arctan\left(\frac{\Theta r}{\sqrt{12Dt_m}}\right) - \frac{D}{2}\ln\left(12Dt_m + r^2\Theta^2\right)$$

Probability et PTPM à un Pore Nucléaire dans une Cellule Radiale

$$P_n \approx \frac{d_m}{d_m + K} \left(1 - \frac{K\delta (d_m\delta + Dt_m)}{12Dt_m d_m (d_m + K)} \Theta^2 \right)$$

$$\tau_n \approx \frac{K}{k (d_m + K)} \left(1 + \frac{\delta (d_m\delta + Dt_m)}{12Dt_m (d_m + K)} \Theta^2 \right).$$

avec $K = 2k_0 \delta t_m \ln \left(\frac{1}{\epsilon}\right)$ et $\alpha = \left(1 + \frac{R + \delta}{d_m}\right) \frac{1}{24}.$

Probability et PTPM à un Pore Nucléaire dans une Cellule Radiale

$$P_n \approx \frac{d_m}{d_m + K} \left(1 - \frac{K\delta (d_m\delta + Dt_m)}{12Dt_m d_m (d_m + K)} \Theta^2 \right)$$

$$\tau_n \approx \frac{K}{k (d_m + K)} \left(1 + \frac{\delta (d_m\delta + Dt_m)}{12Dt_m (d_m + K)} \Theta^2 \right).$$

avec $K = 2k_0 \delta t_m \ln \left(\frac{1}{\epsilon}\right)$ et $\alpha = \left(1 + \frac{R+\delta}{d_m} \right) \frac{1}{24}.$

Avec les Paramètres Biologiques

$$P_n \approx 95\%$$

 $\tau_n \approx 3min.$

sans dérive: $\tau_n \approx 15 min$.

Thibault Lagache Modélisation des T

Modélisation des Trajectoires Virales dans le Cytoplasme

- Modélisation des trajectoires virales
- Atteindre un pore nucléaire= Problème d' "échappée belle"
- Prise en compte de plusieurs pores

Problème d'Échappée Belle

$$\begin{array}{l} \mathsf{d}{=}2 \Rightarrow \epsilon = \frac{|\partial \Omega_{\mathsf{a}}|}{|\partial \Omega|} \\ \mathsf{d}{=}3 \Rightarrow \epsilon{=} \text{ rayon du trou} \end{array}$$

 $\epsilon \ll 1$

Brownian particle

Temps Moyen d'Échappée

$$\begin{cases} \tau^{2d} = |\Omega| \frac{ln\left(\frac{1}{\epsilon}\right)}{D\pi}, \\ \tau^{3d} = \frac{|\Omega|}{4D\epsilon}. \end{cases}$$

M. J. Ward, J. B. Keller, SIAM J. Appl. Math. 53 (1993)

D. Holcman, Z. Schuss, J. of Stat. Phys. 117 (2004).

Thibault Lagache

Modélisation des Trajectoires Virales dans le Cytoplasme

Probabilité P_n et PTPM τ_n à un Pore Nucléaire

Probabilité Conditionnelle:

 $p(\mathbf{x},t) = \int_{\Omega} Pr\{X(t) \in \mathbf{x} + d\mathbf{x} | X(0) = \mathbf{y}\} p_i(\mathbf{y}) d\mathbf{y}$

Équation de Fokker-Planck

$$\partial_{t} p = D\Delta p - \nabla \left(p \nabla b \left(\mathbf{x} \right) \right) - k \left(\mathbf{x} \right) p$$

<u>conditions au bord</u>: $p = 0 \text{ sur } \partial \Omega_a$ (pores nucléaires) et $J(\mathbf{x}, t) . n_{\mathbf{x}} = (-D\nabla p(\mathbf{x}, t) + \mathbf{b}(\mathbf{x})p(\mathbf{x}, t)) . n_{\mathbf{x}} = 0 \text{ sur } \partial \Omega - \partial \Omega_a.$

Probabilité P_n et PTPM τ_n à un Pore Nucléaire

Probabilité Conditionnelle:

 $p(\mathbf{x},t) = \int_{\Omega} Pr\{X(t) \in \mathbf{x} + d\mathbf{x} | X(0) = \mathbf{y}\} p_i(\mathbf{y}) d\mathbf{y}$

Équation de Fokker-Planck

$$\partial_{t} p = D\Delta p - \nabla \left(p \nabla b(\mathbf{x}) \right) - k(\mathbf{x}) p$$

<u>conditions au bord</u>: $p = 0 \text{ sur } \partial \Omega_a$ (pores nucléaires) et $J(\mathbf{x}, t) . n_{\mathbf{x}} = (-D\nabla p(\mathbf{x}, t) + \mathbf{b}(\mathbf{x})p(\mathbf{x}, t)) . n_{\mathbf{x}} = 0 \text{ sur } \partial \Omega - \partial \Omega_a.$

 P_n et τ_n

$$P_n = 1 - \int_{\Omega} k(\mathbf{x}) \tilde{p}(\mathbf{x}) d\mathbf{x}$$

$$\tau_n = \frac{\int_{\Omega} \tilde{p}(\mathbf{x}) d\mathbf{x} - \int_0^{\infty} \int_{\Omega} k(\mathbf{x}) t p(\mathbf{x}, t) d\mathbf{x} dt}{P_n}$$

avec $\tilde{p}(\mathbf{x}) = \int_0^\infty p(\mathbf{x}, t) dt$

Asymptotiques de l'Échappée Belle: Hypothèses

• n petits pores $=\partial \Omega_a$ • $\frac{|\partial \Omega_a|}{|\partial \Omega|} = n\epsilon$, pour d=2, ou $n\pi\epsilon^2/|\partial \Omega|$, pour d=3, avec $\epsilon \ll 1$ • petit taux de dégradation $k \ll 1$ • $\mathbf{b} = -\nabla \Phi$, $\Phi(\mathbf{x}) = \Phi_0$ for $\mathbf{x} \in \partial \Omega_a$ (ex. dérive radiale avec un

noyau au centre de la cellule)

Asymptotiques de l'Échappée Belle: Résultats

Résultats Asymptotiques en ϵ

$$\left\{ \begin{array}{l} P_n = \frac{e^{-\frac{\Phi_0}{D}}}{f_d(\epsilon)\int_{\Omega}e^{-\frac{\Phi(\mathbf{x})}{D}}k(\mathbf{x})d\mathbf{x} + e^{-\frac{\Phi_0}{D}}},\\ \tau_n = \frac{f_d(\epsilon)\int_{\Omega}e^{-\frac{\Phi(\mathbf{x})}{D}}d\mathbf{x}}{f_d(\epsilon)\int_{\Omega}e^{-\frac{\Phi(\mathbf{x})}{D}}k(\mathbf{x})d\mathbf{x} + e^{-\frac{\Phi_0}{D}}}, \end{array} \right.$$

$$f_2(\epsilon) = rac{ln(rac{1}{n\epsilon})}{D\pi}$$
 et $f_3(\epsilon) = rac{1}{4Dn\epsilon}$

D. Holcman, J. Stat. Phys. 127 (2007)

Asymptotiques de l'Échappée Belle: Résultats

Résultats Asymptotiques en ϵ

$$\left\{ \begin{array}{l} P_n = \frac{e^{-\frac{\Phi_0}{D}}}{f_d(\epsilon)\int_{\Omega}e^{-\frac{\Phi(\mathbf{x})}{D}}k(\mathbf{x})d\mathbf{x} + e^{-\frac{\Phi_0}{D}}}, \\ \tau_n = \frac{f_d(\epsilon)\int_{\Omega}e^{-\frac{\Phi(\mathbf{x})}{D}}d\mathbf{x}}{f_d(\epsilon)\int_{\Omega}e^{-\frac{\Phi(\mathbf{x})}{D}}k(\mathbf{x})d\mathbf{x} + e^{-\frac{\Phi_0}{D}}}, \end{array} \right.$$

$$f_2(\epsilon) = rac{ln\left(rac{1}{n\epsilon}
ight)}{D\pi}$$
 et $f_3(\epsilon) = rac{1}{4Dn\epsilon}$

D. Holcman, J. Stat. Phys. 127 (2007)

Problème: formules plus valables pour beaucoup de trous!

- Modélisation des trajectoires virales
- Atteindre un pore nucléaire= Problème d' "échappée belle"
- Prise en compte de plusieurs pores

fenêtres absorbantes distribuées sur une structure (noyau) Σ

Résultats Électrostatiques ($\mathbf{b} = \mathbf{0}, k = 0$)

$$\tau_n = \frac{\frac{1}{4Dn\epsilon} \int_{\Omega} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}}{\frac{1}{4Dn\epsilon} \int_{\Omega} e^{-\frac{\Phi(\mathbf{x})}{D}} k(\mathbf{x}) d\mathbf{x} + e^{-\frac{\Phi_0}{D}}} \Rightarrow \lim_{n\epsilon \to \infty, n\epsilon^2 \ll 1} \tau_n = 0$$

- ∢ ≣ ▶

Résultats Électrostatiques ($\mathbf{b} = \mathbf{0}, k = 0$)

$$\tau_{n} = \frac{\frac{1}{4Dn\epsilon} \int_{\Omega} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}}{\frac{1}{4Dn\epsilon} \int_{\Omega} e^{-\frac{\Phi(\mathbf{x})}{D}} k(\mathbf{x}) d\mathbf{x} + e^{-\frac{\Phi_{0}}{D}}} \Rightarrow \lim_{n\epsilon \to \infty, n\epsilon^{2} \ll 1} \tau_{n} = 0$$

Résultats Électrostatiques pour k = 0 et $\mathbf{b} = \mathbf{0}$ (H.C. Berg and M. Purcell, **Biophys. J.** 20 (1977)) :

$$\tau_n = \frac{|\Omega|}{D} \left(\frac{1}{C_{\Sigma}} + \frac{1}{4N\epsilon} \right)$$

où C_{Σ} =capacitance du noyau (pour une sphère de rayon $\delta \Rightarrow C_{\Sigma} = 4\pi\delta$).

Calcul de P_n et τ_n : étapes

$$P_n = 1 - \int_{\Omega} k(\mathbf{x}) \tilde{p}(\mathbf{x}) d\mathbf{x}$$

$$\tau_n = \frac{\int_{\Omega} \tilde{p}(\mathbf{x}) d\mathbf{x} - \int_0^{\infty} \int_{\Omega} k(\mathbf{x}) t p(\mathbf{x}, t) d\mathbf{x} dt}{P_n}$$

avec $\tilde{p}(\mathbf{x}) = \int_0^\infty p(\mathbf{x}, t) dt$

- étape 1 Équation de Fokker-Planck et fonction de Green
- étape 2 Identité de Green
- étape 3 Asymptotique en $\epsilon, k \ll 1$
- étape 4 Système Linéaire
- étape 5 Asymptotique pour $n \gg 1$

Équation de Fokker-Planck pour $\tilde{p}(\mathbf{x})$

$$D\Delta \tilde{p} - \nabla \left(\tilde{p} \nabla b\left(\mathbf{x} \right) \right) - k\left(\mathbf{x} \right) \tilde{p} = -p_i(\mathbf{x}).$$

<u>conditions au bord</u>: $\tilde{p} = 0 \text{ sur } \partial \Omega_a = \bigcup_{i=1}^n \partial \Omega_i \text{ (pores nucléaires)}$ et $\tilde{J}(\mathbf{x}).n_{\mathbf{x}} = 0 \text{ sur } \partial \Omega - \partial \Omega_a$. $\partial \Omega_a = n \text{ trous absorbants } \partial \Omega_i \text{ (rayon } \epsilon, \text{ centrés en } (\mathbf{x}_i)_{i=1}^n \text{ sur } \Sigma)$

Fonction de Green $\mathcal{N}(\mathbf{x}, \mathbf{x}_0)$

$$D\Delta\mathcal{N}(\mathbf{x},\mathbf{x}_0) = -\delta_{\mathbf{x}_0}(\mathbf{x}), \ \mathbf{x} \in \Omega, \ \mathrm{et} \ Drac{\partial\mathcal{N}}{\partial n}(\mathbf{x},\mathbf{x}_0) = -rac{1}{|\partial\Omega|} \ \mathbf{x} \in \partial\Omega.$$

$$\int_{\Omega} \left(D\Delta \tilde{p}(\mathbf{x}) - \nabla \cdot \mathbf{b} \tilde{p}(\mathbf{x}) - k \tilde{p}(\mathbf{x}) \right) \mathcal{N}(\mathbf{x}, \mathbf{x}_0) - D\Delta \mathcal{N}(\mathbf{x}, \mathbf{x}_0) \tilde{p}(\mathbf{x}) d\mathbf{x},$$

Identité de Green + Équations de l'étape 1 \Rightarrow

$$\begin{split} \int_{\Omega} \left(k(\mathbf{x}) \tilde{p} - p_i(\mathbf{x}) \right) \mathcal{N}(\mathbf{x}, \mathbf{x}_0) d\mathbf{x} &= -\int_{\partial N_a} \tilde{\mathbf{J}}(\mathbf{x}) \cdot \mathbf{n}_{\mathbf{x}} \mathcal{N}(\mathbf{x}, \mathbf{x}_0) d\mathbf{x} \\ &+ \int_{\Omega} \mathbf{b}(\mathbf{x}) \cdot \nabla \mathcal{N}(\mathbf{x}, \mathbf{x}_0) \tilde{p}(\mathbf{x}) d\mathbf{x} \\ &+ \frac{1}{|\partial \Omega|} \int_{\partial \Omega} \tilde{p}(\mathbf{x}) d\mathbf{x} - \tilde{p}(\mathbf{x}_0) \end{split}$$

Étape 3: Asymptotiques en $\epsilon, k \ll 1$

•
$$\tilde{p}(\mathbf{x}) \approx C_{\epsilon} e^{-\frac{\Phi(\mathbf{x})}{D}}$$
 avec $\lim_{\epsilon \to 0} C_{\epsilon} = +\infty$
 $\Rightarrow \frac{1}{|\partial \Omega|} \int_{\partial \Omega} \tilde{p}(\mathbf{x}) d\mathbf{x} + \int_{\Omega} \mathbf{b}(\mathbf{x}) \cdot \nabla \mathcal{N}(\mathbf{x}, \mathbf{x}_0) \tilde{p}(\mathbf{x}) d\mathbf{x} \approx C_{\epsilon} e^{-\frac{\Phi(\mathbf{x}_0)}{D}}$

• $\int_{\Omega} p_i(\mathbf{x}) \mathcal{N}(\mathbf{x}, \mathbf{x}_i) d\mathbf{x}$ indépendant de ϵ

Asymptotiques en $\epsilon, k \ll 1$

$$\int_{\partial N_a} \tilde{\mathbf{J}}(\mathbf{x}) \cdot \mathbf{n}_{\mathbf{x}} \mathcal{N}(\mathbf{x}, \mathbf{x}_0) d\mathbf{x} + \tilde{p}(\mathbf{x}_0) = C_{\epsilon} e^{-\frac{\Phi(\mathbf{x}_0)}{D}}$$

伺 ト く ヨ ト く ヨ ト

Étape 4: Système Linéaire pour $\mathbf{x}_0 = \mathbf{x}_i$, $1 \le i \le n$

$$\mathbf{x}_0 = \mathbf{x}_i$$
, $1 \le i \le n + \text{singularités}$:

• $\mathcal{N}(\mathbf{x}, \mathbf{x}_i) = \frac{1}{2\pi D |\mathbf{x} - \mathbf{x}_i|} + \omega_{\mathbf{x}_i}(\mathbf{x})$ avec $\omega_{\mathbf{x}_i}$ une fonction régulière harmonique

•
$$\mathbf{\tilde{J}}(s = |\mathbf{x} - \mathbf{x}_i|).\mathbf{n}_s \approx rac{g_0'}{\sqrt{\epsilon^2 - s^2}}$$

Syqtème Linéaire avec n+1 inconnues $(C_{\epsilon}, g_1^0, \dots, g_n^0)$

$$rac{\pi}{2D}g_0^i + 2\pi\epsilon\sum_{j=1,j
eq i}^n \mathcal{N}(\mathbf{x}_j,\mathbf{x}_i)g_0^j = C_\epsilon e^{-rac{\Phi(\mathbf{x}_j)}{D}}, ext{ for } 1 \le i \le n$$
 $2\pi\epsilon\sum_{i=1}^n g_0^i = 1 - C_\epsilon\int_\Omega k(\mathbf{x})e^{-rac{\Phi(\mathbf{x})}{D}}d\mathbf{x}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Étape 4: Système Linéaire pour $\mathbf{x}_0 = \mathbf{x}_i$, $1 \le i \le n$

$$\mathbf{x}_0 = \mathbf{x}_i$$
, $1 \le i \le n + \text{singularités}$:

• $\mathcal{N}(\mathbf{x}, \mathbf{x}_i) = \frac{1}{2\pi D |\mathbf{x} - \mathbf{x}_i|} + \omega_{\mathbf{x}_i}(\mathbf{x})$ avec $\omega_{\mathbf{x}_i}$ une fonction régulière harmonique

•
$$\mathbf{\tilde{J}}(s = |\mathbf{x} - \mathbf{x}_i|).\mathbf{n}_s \approx rac{g_0'}{\sqrt{\epsilon^2 - s^2}}$$

Syqtème Linéaire avec n+1 inconnues $(C_{\epsilon}, g_1^0, \dots, g_n^0)$

$$rac{\pi}{2D}g_0^i + 2\pi\epsilon \sum_{j=1, j
eq i}^n \mathcal{N}(\mathbf{x}_j, \mathbf{x}_i)g_0^j = C_\epsilon e^{-rac{\Phi(\mathbf{x}_i)}{D}}, ext{ for } 1 \le i \le n$$
 $2\pi\epsilon \sum_{i=1}^n g_0^i = 1 - C_\epsilon \int_\Omega k(\mathbf{x}) e^{-rac{\Phi(\mathbf{x})}{D}} d\mathbf{x}.$

$$P_n = 1 - C_{\epsilon} \int_{\Omega} k(\mathbf{x}) e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x} \text{ et } \tau_n = C_{\epsilon} \int_{\Omega} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}$$

Thibault Lagache Modélisation des Trajectoires Virales dans le Cytoplasme

Étape 5: Asymptotique pour $n \gg 1$

somme des équations du système linéaire + équation de conservation:

$$2\pi\epsilon\sum_{i=1}^n g_0^i = 1 - \mathcal{C}_\epsilon \int_\Omega k(\mathbf{x}) e^{-rac{\Phi(\mathbf{x})}{D}} d\mathbf{x}$$

•
$$\frac{1}{n} \sum_{j=1, j \neq i}^{n} \mathcal{N}(\mathbf{x}_j, \mathbf{x}_i) \approx \frac{\int_{\partial \Sigma} \mathcal{N}(\mathbf{x}, \mathbf{x}_i) d\mathbf{x}}{|\partial \Sigma|} \approx \frac{1}{DC_{\Sigma}}$$

• $\frac{1}{n} \sum_{i=1}^{n} e^{-\frac{\Phi(\mathbf{x}_i)}{D}} \approx \frac{\int_{\partial \Sigma} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}}{|\partial \Sigma|}$

Asymptotique de C_{ϵ}

$$C_{\epsilon} = \frac{\frac{1}{4nD\epsilon} + \frac{1}{DC_{\Sigma}}}{\frac{\int_{\partial\Sigma} e^{-\frac{\Phi(\mathbf{x})}{D}}d\mathbf{x}}{|\partial\Sigma|} + \left(\frac{1}{4nD\epsilon} + \frac{1}{DC_{\Sigma}}\right)\int_{\Omega} k(\mathbf{x})e^{-\frac{\Phi(\mathbf{x})}{D}}d\mathbf{x}}$$

伺 ト イヨト イヨト

Probabilité P_n et PTPM τ_n

$$\begin{cases} P_n = \frac{\frac{\int_{\partial \Sigma} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}}{|\partial \Sigma|}}{\left(\frac{1}{4nD\epsilon} + \frac{1}{DC_{\Sigma}}\right) \int_{\Omega} k(\mathbf{x}) e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x} + \frac{\int_{\partial \Sigma} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}}{|\partial \Sigma|}, \\ \tau_n = \frac{\left(\frac{1}{4nD\epsilon} + \frac{1}{DC_{\Sigma}}\right) \int_{\Omega} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}}{\left(\frac{1}{4nD\epsilon} + \frac{1}{DC_{\Sigma}}\right) \int_{\Omega} k(\mathbf{x}) e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x} + \frac{\int_{\partial \Sigma} e^{-\frac{\Phi(\mathbf{x})}{D}} d\mathbf{x}}{|\partial \Sigma|}. \end{cases}$$
Sans Intéraction: $P_n = \frac{e^{-\frac{\Phi(n)}{D}}}{\frac{1}{4nD\epsilon} \int_{\Omega} e^{-\frac{\Phi(n)}{D}} k(\mathbf{x}) d\mathbf{x} + e^{-\frac{\Phi(n)}{D}}}$

▲圖▶ ▲屋▶ ▲屋▶

3

Résultats Analytiques Contre Simulations Browniennes

Surface du noyau recouverte par les pores= 2%

Résultats Analytiques Contre Simulations Browniennes

Surface du noyau recouverte par les pores= 2%

- PTPM avec 1 gros trou= $2 \times$ PTPM avec 100 trous
- Contributions biologiques relatives: $\frac{1}{DC_{\Sigma}} \approx 2 6 \times \frac{1}{4nD\epsilon}$ (*n* = 1000 - 3000, 1 - 3% de la surface du noyau recouverte)

- Efficacité virale: $P_n = 95\%$ et $\tau_n \approx 3min$
- **2** Sans dérive: $\tau_n = 15 \min \Rightarrow \text{Transport actif efficace}$
- **③** PTPM avec 1 gros trou= $2 \times$ PTPM avec 100 trous
- Contributions biologiques relatives: $\frac{1}{DC_{\Sigma}} \approx 2 6 \times \frac{1}{4nD\epsilon}$

Conclusion Générale et Perspectives

- Premiers modèles stochastiques à l'échelle moléculaire des étapes précoces de l'infection virale
- Description de Langevin des trajectoires intermittentes virales avec calibration du terme de dérive
- Extension des résultats asymptotiques de l' "échappée belle" pour une dynamique (dérive+dégradation) et un domaine (plusieurs pores) généraux

Perspectives

- Calibration de la dérive dans une cellule 3-dimensionnelle?
- Impact de la position des pores sur le PTPM?
- Distribution du PTP (calcul des moments)?

FIN

lagache@biologie.ens.fr

Thibault Lagache Modélisation des Trajectoires Virales dans le Cytoplasme