Modeling the Endosomal Step of Viral Infection

Thibault Lagache

École Normale Supérieure

March 31st 2010

Thibault Lagache Modeling the Endosomal Step of Viral Infection

Viral Vectors in Gene Therapy

Viral and Synthetic Gene Vectors in Gene Therapy

VIRAL VECTORS

SYNTHETIC VECTORS

1-100	<i>in vitro</i> efficiency (genes/cell)	10 ⁴ -10 ⁶
3 - 8	gene size (kbp)	> 150
30-100 nm	particle size	variable

low efficiency

Early Steps of Gene Delivery

Endosomal step and free trafficking in the cytoplasm limit the genes transfer in gene therapy

Lagache et al., Current Opinion in Microbiology, 12(4) 2009.

- Biophysical model of the escape process
- Modeling the conformational change of viral active proteins
- Viral escape dynamics

• Biophysical model of the escape process

- Modeling the conformational change of viral active proteins
- Viral escape dynamics

4 3 5 4

Biological Facts

Modeling the Endosomal Step of Viral Infection

- Partial denaturation is required
- Escape dynamics (mean escape time and pH)?Probability to escape in the right pH range?
- synthetic vectors mainly fail to escape ⇒ understand the viral mechanisms (and mimic them!)

Biophysical Model of the Active Protein Conformational Change

Thibault Lagache Modeling the Endosomal Step of Viral Infection

Viral Escape Model

• Poissonian entry of protons (rate λ)

• Conformational change of one protein= limiting event for the escape of all viruses

- 4 同 2 4 日 2 4 日 2

- Biophysical model of the escape process
- Modeling the conformational change of viral active proteins
- Viral escape dynamics

Order of Magnitude

- $pH = 7 \Rightarrow 23$ protons in a R = 450 nm endosome
- $pH = 6 \Rightarrow 230$ protons
- $pH = 5 \Rightarrow 2300$ protons

 $n_{
m v} pprox 1-10$ viruses, $n_P pprox 5$ active proteins

 \Rightarrow 5 to 50 proteins to share the protons

Stochastic approach

通 と イ ヨ と イ ヨ と

Transition Probabilities

X(t, c)=number of bound sites ($0 \le X \le n_s$).

Markov jump process

Small parameter
$$\epsilon = 1/n_s \Rightarrow X_\epsilon = \epsilon X$$

Transition Probabilities

$$\begin{aligned} & \operatorname{Prob}\{\Delta X_{\epsilon} = \epsilon | X_{\epsilon}(t,c) = x\} = r(x,c)\Delta t, \\ & \operatorname{Prob}\{\Delta X_{\epsilon} = -\epsilon | X_{\epsilon}(t,c) = x\} = l(x,c)\Delta t, \\ & \operatorname{Prob}\{\Delta X_{\epsilon} = 0 | X_{\epsilon}(t,c) = x\} = (1 - r(x,c) - l(x,c))\Delta t. \end{aligned}$$

Conformational Change Mean Time

 x_c =critical thereshold and $x_0(c)$ =mean number of bound sites

Leading order term in $\epsilon \ll 1$ (C. Knessl et al *J Chem Phys* **81** (1984))

$$\tau_0(c) \approx C(\epsilon, c) \left(1 - \left(I(x_c, c) / r(x_c, c) \right)^{-\frac{x_c - x_0(c)}{\epsilon}} \right)$$

where

$$C(\epsilon, c) = \frac{1}{r(x_0(c), c)} \frac{\sqrt{\frac{2\pi}{\epsilon \frac{\partial}{\partial x}(l/r)(x_0(c), c)}}}{\Phi(x_c, c)}$$

and

$$\Phi(x,c) = \frac{l(x,c)/r(x,c)-1}{\sqrt{l(x,c)/r(x,c)}} e^{-\frac{1}{c}\int_{x_0(c)}^x \log(l(s,c)/r(s,c))ds}$$

• • = • • = •

Validation of the Model with the Influenza Hemagglutinin

Experimental conformational change rates

pН	$k_{\rm A} {\rm s}^{-1}$
5.6	0.017
5.4	0.020
5.2	0.067
5.1	0.12
4.9	5.78

▶ ★ 문 ▶ ★ 문 ▶

3

Validation of the Model with the Influenza Hemagglutinin

Experimental conformational change rates

pH	$k_{\rm A} {\rm s}^{-1}$
5.6	0.017
5.4	0.020
5.2	0.067
5.1	0.12
4.9	5.78

- Biophysical model of the escape process
- Modeling the conformational change of viral active proteins
- Viral escape dynamics

Viral Escape Kinetics

Mean Escape Time

$$\bar{\tau}_{e} = \frac{1}{\lambda} \left(1 + \sum_{k=1}^{\infty} \left(\prod_{i=1}^{k} \left(1 + \lambda_{i} / \lambda \right) \right)^{-1} \right), \text{ where } \lambda_{i} = \frac{n_{v} n_{P}}{C\left(\epsilon, c\left(i\right)\right)}.$$

Optimal Number of Viruses

- Viruses must escape before being digested, but have to be partially denatured ...
- \Rightarrow they have to escape in a certain pH range (white band)

The optimal number of viruses in the endosome is 5

- 4 同 ト 4 ヨ ト 4 ヨ

Conclusion and Perspectives

Conclusion

- Mean time and variance decreases with the number of viruses and the protons entry rate
- For the adeno-associated virus (AAV), mean escape time around 20 minutes ⇒ escape from late endosome
- No effect of the endosomal size ⇒ neglect endosomes fusion/fission events?
- Viruses must escape in a certain pH range ⇒ optimal number of viruses in the endosome

Conclusion and Perspectives

Conclusion

- Mean time and variance decreases with the number of viruses and the protons entry rate
- For the adeno-associated virus (AAV), mean escape time around 20 minutes ⇒ escape from late endosome
- No effect of the endosomal size ⇒ neglect endosomes fusion/fission events?
- Viruses must escape in a certain pH range ⇒ optimal number of viruses in the endosome

Perspectives

- Endosomal escape of viruses coated by many active proteins (e.g. Influenza): How to account for the proteins interactions and cooperativity?
- Designing a mimetic mechanism for synthetic gene vectors?

David Holcman's Group

- C. Amuroso
- D. Fresche
- J. Reingruber
- T. Lagache
- G Malherbe
- S. Vakeroudis
- J. Sibille
- N. Hoze
- K. Dao Duc
- A. Assaf

Fundings

ERC-Starting Grant Chaire Dexcellence HFSP PG de Gennes Foundation FRM Minerva

Collaborations

- Z. Schuss (Tel Aviv) A. Singer (Princeton) M. Yor (Paris VI) I. Kupka (Paris VI)
- M. Segal (Weizmann) E. Korkotian (Weizmann)
- O. Danos (Necker) Y. Shaul (Weizmann)
- D. Choquet (Bordeaux) A. Triller (ENS)
- T. Galli (Monod) N. Rouach (College-de-France) A. Taddei (Curie)

< ロ > < 同 > < 回 > < 回 >

Contact: lagache@biologie.ens.fr

▶ ▲ 臣 ▶

э