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Abstract. Virus trafficking is fundamental for infection success, and plasmid cytosolic trafficking
is a key step of gene delivery. Based on the main physical properties of the cellular transport
machinery such as microtubules and motor proteins, our goal here is to derive a mathematical model
to study cytoplasmic trafficking. Because experimental results reveal that both active and passive
movements are necessary for a virus to reach the cell nucleus, by taking into account the complex
interactions of the virus with the microtubules, we derive here an estimate of the mean time a virus
reaches the nucleus. In particular, we present a mathematical procedure in which the complex viral
movement, oscillating between pure diffusion and a deterministic movement along microtubules, can
be approximated by a steady state stochastic equation with a constant effective drift. An explicit
expression for the drift amplitude is given as a function of the real drift, the density of microtubules,
and other physical parameters. The present approach can be used to model viral trafficking inside
the cytoplasm, which is a fundamental step of viral infection, leading to viral replication and, in
some cases, to cell damage.
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1. Introduction. Because cytosolic transport has been identified as a critical
barrier for synthetic gene delivery [1], the delivery of plasmids or viral DNAs from
the cell membrane to the nuclear pores has attracted the attention of many biologists.
The cell cytosol contains many types of organelles, actin filaments, microtubules, etc.,
so that to reach the nucleus, a viral DNA has to travel through a crowded and risky
environment. We are interested here in studying the efficiency of the delivery process
and we present a mathematical model of virus trafficking inside the cell cytoplasm.
We model the viral movement as a Brownian motion. However, the density of actin
filaments and microtubules inside the cell can hinder diffusion, as demonstrated ex-
perimentally [2]. In a crowded environment, we will model the virus as a material
point. This reduction is simplistic for several reasons: an actin filament network can
trap a diffusing object that is beyond a certain size, and, as observed experimentally,
a DNA fragment cannot find its way across the actin filaments [2]. Active directional
transport along microtubules or actin filaments seems then the only way to deliver
a plasmid to the nucleus. The active transport of the virus generally involves motor
proteins, such as kinesin (to travel in the direction of the cell membrane) or dynein (to
travel toward the nucleus). Once a virus is attached to a dynein protein, its movement
can be modeled as a deterministic drift toward the nucleus.

Recently, a macroscopic model has been developed to describe the dynamics of
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VIRUS TRAFFICKING INSIDE A CELL 1147

adenovirus concentration inside the cell cytoplasm [3]. This approach offers very in-
teresting results about the effect of microtubules, but neglects the complexity of the
geometry and cannot be used to describe the movement of a single virus, which might
be enough to cause cellular infection. Modeling virus trafficking requires the use of
a stochastic description. We model here the motion of a virus as that of a material
point, so the probability of it being trapped by actin filaments or microtubules is ne-
glected. In the present approximation, the viral movement has two main components:
a Brownian one, which accounts for its free movement, and a drift directed toward
the centrosome or MTOC (microtubules organization center), an organelle located
near the nucleus. The magnitude of the drift along microtubules depends on many
parameters such as the binding and unbinding rates and the velocity of the motor
proteins [4].

In the present approach, we present a method to approximate a time-dependent
dynamics of virus trafficking by an effective stochastic equation with a radial steady
state drift. The main difficulties we have to overcome arise from the time-dependent
nature of the trajectories which consists of intermittent epochs of drifts and free diffu-
sion. We propose to derive an explicit expression for the steady state drift amplitude.
In this approximation, the effective drift will gather the mean properties of the cyto-
plasmic organization such as the density of microtubules and its off binding rate.

Our method for finding the effective drift can be described as follows. First, we
approximate the cell geometry as a two-dimensional disk and use a pure Brownian
description to approximate the virus diffusion step. This geometrical approximation
is valid for any two-dimensional cell such as the in vitro flat skin fibroblast culture
cells [3]: indeed, due to their adhesion to the substrate, the thickness of these cells can
be neglected in first approximation. Second, when the distribution of the initial viral
position is uniform on the cell surface, we will estimate, during the diffusing period,
the hitting position on a microtubule. By solving a partial differential equation,
inside a sliced shape domain, delimited by two neighboring microtubules, we will
provide an estimate of the mean time to the most likely hitting point. Finally, the
amplitude of the radial steady state drift will be obtained by an iterative method
which assumes that, after a virus has moved a certain distance along a microtubule,
it is released at a point uniformly distributed on the final radial distance from the
nucleus, ready for a new random walk. This scenario repeats until the virus reaches
the nucleus surface. Finally, we will compute the mean time, the mean number of
steps before a virus reaches the nucleus, and the amplitude of the effective drift by
using the following criteria: The mean first passage time (MFPT) to the nucleus of
the iterative approximation is equal to the MFPT obtained by directly solving an
Ornstein–Uhlenbeck stochastic equation. The explicit computation of the effective
drift is a key result in the estimation of the probability and the mean time a single
virus or DNA molecule takes to reach a small nuclear pore [5].

2. Modeling stochastic viral movement inside a biological cell. We ap-
proximate the cell as a two-dimensional geometrical domain Ω, which is here a disk
of radius R, and the nucleus located inside is a concentric disk of much smaller radius
δ � R. We model the motion of an unattached DNA fragment as a material point so
that the probability of it being trapped by actin filaments or microtubules is neglected.
The motion of a (DNA) molecule of mass m is described by the overdamped limit of
the Langevin equation (Smoluchowski’s limit) [6] for the position X(t) of the molecule
at time t. When the particle is not bound to a microtubule filament, its movement
is described as pure Brownian with a diffusion constant D. When the particle hits
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Fig. 2.1. Cell geometry. (a) Cell’s microtubules network. All microtubules starting from the
cell membrane converge to the MTOC, located near the nucleus. (b) Simplified cell’s microtubules
network organization. The MTOC coincides with the nucleus.

a filament, it binds for a certain random time and moves along with a deterministic
drift. We take into account only the movement toward the nucleus, which coincides
here with the MTOC, an organelle in which all microtubules converge (see Figure 2.1).
For δ < |X(t)| < R, we describe the overall movement by the stochastic rule

(2.1) Ẋ =

{ √
2Dẇ for X (t) free,

V r
|r| for X (t) bound,

where V is a constant velocity, ẇ a δ-correlated standard white noise, and r the
X radial coordinate, the origin of which is the center of the cell. We assume that
all filaments starting from the cell surface end on the nuclear surface. The binding
time corresponds to a chemical reaction event; we assume that it is exponentially
distributed, and for simplicity we approximate it by a constant tm.

Once a virus enters the cell membrane, it moves according to the rule (2.1) until
it hits a nuclear pore. Although nuclear pores occupy a small portion of the nuclear
surface, we consider only the virus movement until it hits the nuclear surface D (δ).
In this article, our goal is to replace (2.1) by a steady state stochastic equation

(2.2) Ẋ = b(X) +
√

2Dẇ,

where the drift b is radially symmetric. In a first approximation, we consider a
constant radial drift b(X) = −B r

|r| and compute hereafter the value of the constant

amplitude B such that the MFPTs of the processes (2.2) and (2.1) to the nucleus are
equal.

2.1. Modeling viral dynamics in the cytoplasm. Inside the cytosol, micro-
tubules are distributed on the cell surface and converge radially to the MTOC. In
the present analysis, we do not take into account the effect of organelle crowding due
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(a) (b)

Fig. 2.2. Virus trafficking inside a cell. (a) Representation of the cell portion between two
microtubules. (b) Transport along microtubules: Two fundamental steps are represented. A funda-
mental step is made of the two intermediate steps which are first the diffusion inside the domain
and then the directed motion along the microtubule.

to the endoplasmic reticulum, the Golgi apparatus, etc. However, it is always possi-
ble to include them indirectly by using an apparent diffusion constant. We consider
the fundamental domain Ω̃ defined as the two-dimensional slice of angle Θ between
two neighboring microtubules. We consider here that microtubules are uniformly
distributed, and thus Θ = 2π

N , where N is the total number of microtubules.
Although a virus can drift along microtubules in both directions by using dynein

(resp., kinesin) motor proteins for the inward (resp., outward) movement, we only take
into account the drift toward the nucleus [7]. It is still unclear what is the precise
mechanism used by a virus to select a direction of motion. Attached to a dynein
molecule, the virus transport consists of several steps of few nanometers: the length
of each step depends on the load of the transported cargo and adenosine tryphosphate
(ATP) concentration [8]. We neglect here the complexity of this process, assuming
that ATP molecules are abundant, uniformly distributed over the cell, and not a
limiting factor. We thus assume the bound particle moves toward the nucleus with
the mean constant velocity V . When the particle is released from the microtubule,
inside the domain, the process can start afresh and the particle diffuses freely. Because
the Smoluchowski limit of the Langevin equation does not account for the change in
velocity, we release the particle at a certain distance away from the microtubule, but
at a fixed distance from the nucleus (at an angle chosen uniformly distributed); see
Figure 2.2.

Because microtubules are taken uniformly distributed, we can always release the
virus inside the slice Ω̃, between two neighboring microtubules. Thus the movement
of the virus will be studied in Ω̃: inside the cytosol, the viral movement is purely
Brownian until it hits a microtubule, which is now the lateral boundary of Ω̃ (see
Figure 2.2). We assume that once a virus hits a microtubule, with probability one, the
dynamics switches from diffusion to a deterministic motion with a constant drift. A
virus spends on a microtubule a time that we consider to be exponentially distributed,
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since this time is the sum of escape time from deep potential wells. We approximate
the total time on a microtubule by the mean time tm. Thus a virus moves at a
distance dm = V tm along a microtubule, which depends only on the characteristic of
the virus–microtubule interactions. To summarize, the virus trajectory is a succession
of diffusion steps mixed with some periods of attaching and detaching to microtubules.
This scenario repeats until the virus hits the nuclear surface (Figure 2.2).

2.2. Computing the MFPT to reach the nucleus. We define the mean
time to infection as the MFPT a virus reaches the surface of the disk D (δ) inside the
domain Ω̃ (see Figure 2.2).

To estimate the mean time to infection, we note that we can decompose the overall
motion as a repeated fundamental step. This step consists of the free diffusion of the
particle inside the domain followed by the motion along the microtubule. The total
time of infection τi is then the sum of times the particle spends in each step. Although
the time on a microtubule is deterministically equal to tm, the diffusing time is not
easy to compute and depends on the initial condition. Ultimately τi depends on the
number of times the fundamental step repeats before the particle reaches the nucleus.

Let us now describe each step. The first step starts when the virus enters the cell
at the periphery r = R = R0 (at a random angle θ ∈ [0; Θ]) and ends when the virus
hits either the lateral boundary or the nucleus. We now consider the first passage
time u (R0) to the absorbing boundary and denote by r(R0) the hitting position. To
account for the deterministic drift, during a deterministic time tm we move the virus
from a distance dm along the microtubule. In that case, the initial random position
for the next step is given by r = R1 = r(R0) − dm and the total time in step 1 is
u (R0) + tm.

We iterate the process as follows and consider in each step k the distance Rk =
r(Rk−1)−dm from which the particle starts and the time u (Rk)+ tm it spends inside
the step. If we denote by ns the random number of steps necessary to reach the
nucleus r = δ, the time to infection τi is given by

(2.3) τi =

ns−1∑
k=0

u(Rk) + nstm + tr,

where tr is a residual time, which is the time to reach the nucleus before a full step is
completed.

We are interested in estimating the MFPT τ of τi, given by

(2.4) τ = E(τi) = E

(
ns−1∑
k=0

u(Rk)

)
+ 〈ns〉tm + 〈tr〉,

where 〈ns〉 is the mean number of steps and 〈tr〉 is the mean residual time. If we in-
troduce the probability distribution pm = Pr{ns = m}, which states that the number
of steps is exactly equal to m, we can write

(2.5) τ = E(τi) =

∞∑
m=1

E

(
ns−1∑
k=0

u(Rk)|ns = m

)
pm + 〈ns〉tm + 〈tr〉.

To estimate the MFPT τ , we shall approximate the previous sum by using the MFPT
ū(Rk) in each step k. To estimate ū(Rk), we will solve (in the next paragraph) the
Dynkin’s equation with the following boundary conditions: Inside Ω̃, the particle is
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reflected at the periphery r = R and absorbed at the nucleus ∂Ω̃a and at θ = 0 and
θ = Θ. We will also estimate the mean distance d̄k covered during step k. For that
purpose we will estimate the mean exit position rm(Rk), conditioned on the initial
position r = Rk. Indeed, we will thus get d̄k = Rk − rm(Rk) − dm. The estimates
of the mean distances covered for each fundamental step will ultimately lead to an
approximation of the mean number of steps n = 〈ns〉: n will be computed such that
Rn ≥ δ and Rn+1 < δ (where Rn = rm(Rn−1) − dm is defined recursively). Finally,
we will obtain the following approximation for the infection time:

(2.6) τ ≈
n−1∑
k=0

ū(Rk) + ntm + 〈tr〉.

The mean residual time 〈tr〉 can be equal either to ū(Rn) + αtm, where 0 ≤ α < 1 if
the virus binds to a microtubule in the last step and travels a distance αdm on the
microtubule, or to the MFPT to the nuclear boundary if rm(Rn) < δ.

3. MFPT and exit point distribution. In a first approximation, under the
assumptions of a sufficiently small radius δ � R and an angle Θ � 1 for the compu-
tation of the MFPT and the distribution of exit points, we neglect the nuclear area.
We define the full pie wedge ΩR domain of angle Θ. Inside ΩR, we use the boundary
conditions described above. Consequently, the MFPT to a microtubule u = u (r, θ) of
a virus starting initially at position (r, θ) is a solution of the Dynkin’s equations [6]

DΔu (x) = −1 for x ∈ ΩR,(3.1)

u (x) = 0 for x ∈ ∂ΩR
a ,

∂u

∂n
= 0 for x ∈ ∂ΩR

r ,

where ∂ΩR
a = {θ = 0} ∪ {θ = Θ} and ΩR

r = {r = R}.
3.1. The general solution for the MFPT. In this paragraph only we repa-

rametrize the domain by −Θ/2 ≤ θ ≤ Θ/2. By writing (3.1) in polar coordinates and
using the separation of variables, the general solution of equation(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
(r, θ) = −1 for (r, θ) ∈ ΩR,(3.2)

u (r, θ) = 0 for (r, θ) ∈ ∂ΩR
a ,(3.3)

is given by [9],

(3.4) u (r, θ) =
r2

4D

(
cos (2θ)

cos (Θ)
− 1

)
+

∞∑
n=0

Anr
λn cos (λnθ) for

−Θ

2
≤ θ ≤ Θ

2
,

where the edge boundary is here located at position θ = ±Θ/2. The sum in the
right-hand side is the general solution of the homogeneous problem Δu = 0 in ΩR.
The boundary conditions on the sides of the wedge impose that

(3.5) λn = (2n + 1)
π

Θ
,

while the reflecting condition for r = R reads

(3.6)
∂u

∂r
(R, θ) = 0 for all θ ∈

[
−Θ

2
,
Θ

2

]
.
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Using the uniqueness of Fourier decomposition and the boundary condition (3.6), we
obtain that

(3.7) An =
(−1)

n+1
8R2−λn

DΘλ2
n (λ2

n − 4)
.

By averaging formula (3.4) over an initial uniform distribution, the MFPT to one of
the absorbing edges of the wedge is given by

(3.8) ū (r) =
1

Θ

∫ θ=Θ

θ=0

u (r, θ) dθ =
r2

4D

(
tan (Θ)

Θ
− 1

)
−

∞∑
n=0

16R2−λnrλn

DΘ2λ3
n (λ2

n − 4)
,

where λn = (2n + 1) π
Θ . For Θ small, (3.8) can be approximated by

(3.9) ū (r) =
r2

4D

(
tan (Θ)

Θ
− 1

)
− 16ΘR2 (r/R)

π/Θ

Dπ3
(
(π/Θ)

2 − 4
) .

3.2. Exit points distribution. To estimate the position at which a virus will
attach preferentially to the microtubule, we determine the distribution of exit points,
when the viral particle initially started at a certain radial distance from the nucleus.
We recall that the probability density function (pdf) p (r, t|r0) for finding a diffusing
particle in a volume element dr at time t inside the wedge Ω̃, conditioned on the initial
position r = r0, is a solution of the diffusion equation

∂p (r, t|r0)

∂t
= DΔp (r, t|r0) for r ∈ ΩR,

p (r, t|r0) = 0 for r ∈ ∂ΩR
a ,

∂p (r, t|r0)

∂n
= 0 for r ∈ ∂ΩR

r ,

where the initial condition is p (r, 0|r0) = δ (r − r0). The distribution of exit points
ε (y) is given by

(3.10) ε (y) =

∫ ∞

0

j (y, t) dt,

where the flux j is defined by

j (y, t) = −D
∂p (r, t)

∂n |r = y
.

If we denote C (r0, r) =
∫∞
0

p (r, t|r0) dt, then C is a solution of

(3.11) −DΔC (r0, r) = δ (r − r0) ,

and we have

(3.12) ε (y) = −D
∂C

∂n
(r0,y) for y ∈ ΩR

a .

Consequently, to obtain the pdf of exit points ε, we use the Green function in the wedge
domain ΩR. By using a conformal transformation, we hereafter solve a simplified case
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of an open wedge (i.e., without a reflecting boundary at r = R). This computation
could be compared with the general one that will be derived in the next section.

To compute the exit points distribution, we consider the solution of (3.11), ob-
tained by the image method and a conformal transformation from the open wedge to
the upper complex half-plane. The Green function, solution of (3.11) in the upper
complex half-plane, is given by

(3.13) C (z) =
1

2πD
ln

z − z0

z − z∗0
,

where z∗0 is the complex conjugate of z0. Using the conformal transformation ω =
f (z) = z

π
Θ [10] that maps the interior of the wedge of opening angle Θ to the upper

half-plane, the Green function in the wedge is given by

(3.14) C (z) =
1

2πD
ln

(
z

π
Θ − z

π
Θ
0

z
π
Θ − (z∗0)

π
Θ

)
.

The flux to the line θ is given by

εθ (r) = −D

r

∂C

∂θ

(
reiθ

)
=

1

2πr

iν
(
reiθ

)ν
. (k0 − k∗0)(

(reiθ)
ν − k0

) (
(reiθ)

ν − k∗0
)

=
1

2πr

−2ν
(
reiθ

)ν
rν0 sin (νθ0)

(reiθ)
2ν

+ r2ν
0 − 2 (reiθ)

ν
rν0 cos (νθ0)

,

where ν = π
Θ , k0 = zν0 =

(
r0e

iθ0
)ν

. Finally, the exit point distribution for θ = Θ is
given by

(3.15) εΘ (r) =
r0
Θ

(rr0)
(ν−1)

sin (νθ0)

r2ν + r2ν
0 + 2 (rr0)

ν
cos (νθ0)

,

while for θ = 0 it is given by

(3.16) ε0 (r) =
r0
Θ

(rr0)
(ν−1)

sin (νθ0)

r2ν + r2ν
0 − 2 (rr0)

ν
cos (νθ0)

.

A MATLAB check guarantees that

(3.17)

∫ ∞

0

{εΘ (r) + ε0 (r)}dr = 1.

This simple computation is instructive and shall be compared to the full one given in
section 3.3.

3.3. Exit pdf in a pie wedge. To compute the exit points distribution in a
pie wedge with a reflecting boundary at r = R, we search for an explicit solution of
the diffusion equation in polar coordinates inside the pie wedge. We first consider the
general diffusion equation

∂p

∂t
(x, t|y) = D

(
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂θ2

)
(x, t|y) ,(3.18)

p (x, 0|y) = δ (x− y) ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1154 THIBAULT LAGACHE AND DAVID HOLCMAN

where the boundary conditions are given in (3.1). We may often use the change of
variable for all n ∈ N∗:

k =
nπ

Θ
.

The initial condition is given by

p (x, 0|y) = p (r, θ, 0|r0, θ0) =
2

Θr0
δ (r − r0)

∑
k

sin (kθ) sin (kθ0)

for θ < θ0 (if θ > θ0, θ0 must be replaced by Θ − θ0). To compute the solution of
(3.18), we consider the Laplace transform p̂ of the probability p,

sp̂ (r, θ, s|r0, θ0) −
2

Θr0
δ (r − r0)

∑
k

sin (kθ) sin (kθ0)

= D

(
∂2p̂

∂r2
+

1

r

∂p̂

∂r
+

1

r2

∂2p̂

∂θ2

)
(r, θ, s|r0, θ0) .

Using the separation of variables, we have

p̂ (r, θ, s|r0, θ0) =
∑
k

Rk (r, s) sin (kθ) sin (kθ0) .

Using the change of variable, x (s) = r
√

s
D and x0 (s) = r0

√
s
D , we get for all k that

R
′′

k (x (s) , s) +
1

x (s)
R

′

k (x (s) , s) −
(

1 +
k2

x (s)
2

)
Rk (x (s) , s)

= − 2

ΘDx0 (s)
δ (x (s) − x0 (s)) .

(3.19)

Rk (x (s) , s) is a superposition of modified Bessel functions of order k: Ik (x (s)) and
Kk (x (s)). Thus, for x (s) �= x0 (s) we obtain that

Rk (x (s) , s) = AkIk (x (s)) + BkKk (x (s)) ,

where Ak and Bk are real constants. Since Kk diverges as x (s) → 0, the interior
solution for (x (s) < x0 (s)) depends only on Ik. We denote by Dk the exterior
solution for (x (s) > x0 (s)). We use the general notation x ∧ y = min (x, y) and
x ∨ y = max (x, y); thus

Rk (x (s) , s) = AkIk (x (s) ∧ x0 (s))Dk (x (s) ∨ x0 (s)) .

To determine Dk = akIk + bkKk, we use the reflecting condition at x (s) = x+ (s) =
R
√

s
D and we get that

AkIk (x0 (s)) .
(
akI

′

k (x+ (s)) + bkK
′

k (x+ (s))
)

= 0.

We choose

ak = −K
′

k (x+ (s)) and bk = I
′

k (x+ (s)) .
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Thus

Rk (x (s) , s) = AkIk (x (s) ∧ x0 (s))
(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

)
(x (s) ∨ x0 (s)) .

The constants Ak are determined by integrating (3.19) over an infinitesimal interval
that includes r0. Using the continuity of Rk, we get

(Rk)
′

x(s)>x0(s)
|x(s)=x0(s) − (Rk)

′

x(s)<x0(s)
|x(s)=x0(s) = − 2

ΘDx0 (s)
,

that is,

Ak

(
Ik

(
I

′

k (x+ (s))K
′

k −K
′

k (x+ (s)) I
′

k

)
− I

′

k

(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

))
(x0 (s))

= − 2

ΘDx0 (s)
.

After some simplifications, we get

AkI
′

k (x+ (s))
(
IkK

′

k − I
′

kKk

)
(x0 (s)) = − 2

ΘDx0 (s)
.

Using the recurrent relation between modified Bessel functions (see [11] or [12, p. 489]),

I
′

k (x0 (s)) =

(
Ik−1−

k

x0 (s)
Ik

)
(x0 (s)) and K

′

k (x0 (s)) =

(
−Kk−1−

k

x0 (s)
Kk

)
(x0 (s)) ,

we get

AkI
′

k (x+ (s))

(
Ik

(
−Kk−1−

k

x0 (s)
Kk

)
−
(
Ik−1−

k

x0 (s)
Ik

)
Kk

)
(x0 (s)) = − 2

ΘDx0 (s)
,

that is

AkI
′

k (x+ (s)) (IkKk−1 + Ik−1Kk) (x0 (s)) =
2

ΘDx0 (s)
.

Finally, using this relation and the following Wronskian relation [12, p. 489]:

(IkKk−1 + Ik−1Kk) (x0 (s)) =
1

x0 (s)
,

we obtain that

Ak =
2

ΘDI
′
k (x+ (s))

.

Thus

Rk (x (s) , s)

=
2

ΘDI
′
k (x+ (s))

Ik (x (s) ∧ x0 (s))
(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

)
(x (s) ∨ x0 (s)) .

We can now express the solution p̂ for θ < θ0 by

p̂ (r, θ, s) =
2

ΘD

∑
k

Ik (x (s) ∧ x0 (s))
(
I
′
k (x+ (s))Kk −K

′
k (x+ (s)) Ik

)
(x (s) ∨ x0 (s))

I
′
k (x+ (s))

sin (kθ) sin (kθ0) .
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The exit point distribution ε0 (r) is given by

(3.20) ε0 (r) = −
(
D

r

∂

∂θ

(∫ ∞

0

p (r, θ, t) dt

))
(θ = 0) .

To obtain an analytical expression for expression (3.20), we use the Laplace relation

L
(∫ t

0

f (u) du

)
=

F (z)

z
,

where F = L (f) is the Laplace transform of the function f . We have∫ t

0
p (r, θ, u) du = L−1

(
p̂ (r, θ, s)

s

)

= L−1

(
2

ΘD

∑
k

sin (kθ) sin (kθ0)
Ik (x (s) ∧ x0 (s))

(
I
′
k (x+ (s))Kk −K

′
k (x+ (s)) Ik

)
(x (s) ∨ x0 (s))

sI
′
k (x+ (s))

)
.

The computation of the integral

I(r, θ, t)

=
1

ΘπDi

∑
k

sin(kθ) sin(kθ0)

∫ +i∞

−i∞

Ik(x(s) ∧ x0(s))(I
′
k(x+(s))Kk −K

′
k(x+(s))Ik)(x(s) ∨ x0(s))

sI
′
k(x+(s))

estds

(3.21)

uses the residue theorem, and the details are given in the appendix. We have

I (r, θ, t) =

∫ t

0

p (r, θ, u) du =
2

ΘD
(S1(r, θ, t) + S2(r, θ, t)) ,

where

S1(r, θ, t) =
∑
k

sin (kθ) sin (kθ0)
rk

(
r2k
0 + R2k

)
2kR2krk0

,

S2(r, θ, t) = −2
∑
k

sin (kθ) sin (kθ0)

∞∑
j=1

e−Dα2
j,kt

Jk (rαj,k)Jk (r0αj,k)(
R2α2

j,k − k2
)
J2
k (Rαj,k)

,

and Jk are the k-order Bessel functions and αj,k are the roots of the equation:

J ′
k (Rα) = 0.

Consequently, for r < r0, using (3.20), we get the following exit distribution (for
Θ = 0):

ε0 (r) =
2

Θ

∂

r∂θ

(
lim
t→∞

(S1(r, θ, t) + S2(r, θ, t))
)
θ=0

.

Because

lim
t→∞

S1(r, θ, t) = S1(r, θ) and lim
t→∞

S2(r, θ, t) = 0,

we finally obtain that

(3.22) ε0 (r) =
1

Θ

∑
k

sin (kθ0)
rk−1

(
r2k
0 + R2k

)
R2krk0

,
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and, for r > r0, a similar computation leads to

(3.23) ε0 (r) =
1

Θ

∑
k

sin (kθ0)
rk0

(
r2k + R2k

)
R2krk+1

.

These expressions can be further simplified. Indeed, we rewrite them as follows (for
r < r0):

ε0 (r) =
1

Θr

∑
k

sin (kθ0)

(
r

r0

)k (
1 +

(r0
R

)2k
)
.

Thus,

ε0 (r) =
1

Θr
�m

⎛
⎝∑

n≥1

einνθ0
(

r

r0

)nν (
1 +

(r0
R

)2nν
)⎞⎠ ,

where �m denotes the imaginary part of the expression. We obtain two geometrical
series that can be summed. We get

ε0 (r) =
1

Θr
�m

⎛
⎝ eiνθ0

(
r
r0

)ν

1 − eiνθ0
(

r
r0

)ν +
eiνθ0

(
r
r0

)ν (
r0
R

)2ν
1 − eiνθ0

(
r
r0

)ν (
r0
R

)2ν
⎞
⎠ ,

that is,

ε0 (r) =
1

Θr
�m

⎛
⎝eiνθ0

⎛
⎝

(
r
r0

)ν

1 − eiνθ0
(

r
r0

)ν +

(
rr0
R2

)ν
1 − eiνθ0

(
rr0
R2

)ν
⎞
⎠
⎞
⎠ .

After some rearrangements, we obtain the following exit point distribution on θ = 0,
conditioned on the initial position (r0, θ0):

ε0(r) = ε0 (r|r0, θ0)

=
1

Θr

(
(rr0)

ν
sin (νθ0)

r2ν + r2ν
0 − 2 (rr0)

ν
cos (νθ0)

+

(
rr0R

2
)ν

sin (νθ0)

(rr0)
2ν

+ R4ν − 2 (rr0R2)
ν

cos (νθ0)

)
,

(3.24)

for 0 ≤ r ≤ R. Similarly, for θ = Θ, we obtain

εΘ (r) = εΘ (r|r0, θ0)

=
1

Θr

(
(rr0)

ν
sin (νθ0)

r2ν + r2ν
0 + 2 (rr0)

ν
cos (νθ0)

+

(
rr0R

2
)ν

sin (νθ0)

(rr0)
2ν

+ R4ν + 2 (rr0R2)
ν

cos (νθ0)

)
.

(3.25)

We notice that by letting R tend to ∞, we recover the expressions computed in the
open wedge case ((3.15) and (3.16)).
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Fig. 3.1. Mean exit points distribution. The theoretical distribution (dashed line) is tested
against the empirical one (solid line) obtained by running a simulation of 20,000 Brownian particles,
starting on the wedge bisectrix (θ0 = Θ

2
at r0 = R = 100 for Θ = π

6
). Because the starting

point is located on the bisectrix, ε0 (x) = εΘ (x), and thus the analytical curve is given by ε (r) =

ε0 (r) + εΘ (r) = 2
Θr

( (rr0)(ν)

r2ν+r2ν0
+ (rr0R

2)(ν)

(rr0)2ν+R4ν

)
. In that case, the maximum of the function ε (r) is

achieved at r = r0e
1
2ν

ln
(
ν−1
ν+1

)
.

3.4. The mean exit radius. To determine the mean exit distribution radius
ε (r|r0) for a viral particle starting initially at position r0, θ0, where θ0 is uniformly
distributed between 0 and Θ, we consider ε (r|r0, θ0) = ε0 (r|r0, θ0) + εΘ (r|r0, θ0) and
estimate the integral

(3.26) ε (r|r0) =
1

Θ

∫ Θ

Θ0=0

ε (r|r0, θ0) dθ0.

Integrating expressions (3.24) and (3.25), we get

ε (r|r0) =
2

Θπr

(
ln

(
rν + rν0
|rν − rν0 |

)
+ ln

(
R2ν + (rr0)

ν

R2ν − (rr0)
ν

))
.

We define the mean exit point as rm (r0) = E (r|r0) conditioned on the initial radius
r0. Thus,

(3.27) rm (r0) = E (r|r0) =

∫ R

0

rε (r|r0) dr.

Using the expansion ln (1 + x) =
∑

n≥1 (−1)n+1 xn

n for x < 1, we obtain by a direct
integration that
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rm (r0) =
8

π2

⎛
⎝r0

⎛
⎝ ∞∑

n=0

1

(2n + 1)
2

⎛
⎝ 1

1 − 1

(2n+1)2( π
Θ )

2

⎞
⎠
⎞
⎠

−R

⎛
⎝ ∞∑

n=0

(
r0
R

)(2n+1) π
Θ π

Θ

(2n + 1)
((

(2n + 1) π
Θ

)2 − 1
)
⎞
⎠
⎞
⎠ .

(3.28)

Using the expansion in the first part,

(3.29)
1

1 − 1

(2n+1)2( π
Θ )

2

=

∞∑
p=0

(
Θ

(2n + 1)π

)2p

,

and the approximation Θ � 1, by using the value of the Riemann ζ-function, ζ (2) =
π2

6 and ζ (4) = π4

90 , we obtain that

(3.30) rm (r0) ≈ r0

(
1 +

Θ2

12

)
− 8R

π2

(r0
R

)π/Θ π/Θ

(π/Θ)
2 − 1

.

For Θ small, the second term in the right-hand side of (3.30) is exponentially small.

4. Approximation of a virus motion by an effective Markovian stochas-
tic equation. We replace the successive steps of viral dynamics with an effective
stochastic equation containing a constant steady state drift.

4.1. Methodology. Virus motion described in subsection 2.2 consists of a suc-
cession of drift and diffusing periods. We start with the stochastic equation

(4.1) Ẋ = −B
r

|r| +
√

2Dẇ,

where r is the radial component of X and B is the amplitude of the drift. The MFPT
of the process (4.1) to the nucleus, which is located at r = δ, when the initial position
is located on the cell surface r = R, is solution of

D

(
d2t

dr2
+

1

r

dt

dr

)
(r, θ) −B

dt

dr
(r, θ) = −1 for (r, θ) ∈ Ω,

t (r, θ) = 0 for r = δ,

dt

dr
(r, θ) = 0 for r = R.

A similar equation can be written in the domain Ω̃ with reflective boundary conditions
of the wedge. Both processes in the full domain or in Ω̃ lead to the same MFPT. The
solution t(B, r) is given by

(4.2) t (B, r) = C −
∫ R

r

(∫ R

v

ue−α(u−v)

Dv
du

)
dv,

where α = B
D and

(4.3) t (B,R) = C =

∫ R

δ

(∫ R

v

ue−α(u−v)

Dv
du

)
dv.
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For a fixed radius R, the derivative of the function t (B,R) with respect to B is
strictly negative, which shows that B → t (B,R) is strictly decreasing. To determine
the value of the amplitude B, we match the mean time t (B,R) with the MFPT to
reach the nucleus within the iterative procedure, as described in subsection 2.2: at
time zero, the virus starts at position r = R = R0 and reaches the edge boundary in
mean time ū (R0) and at mean position rm (R0). The viral particle is then transported
toward the nucleus over a distance dm during time tm. Either the particle reaches the
nucleus before time tm and then the algorithm is terminated, or in a second step it
starts at position R1 = rm (R0) − dm. The process iterates until the particle reaches
the nucleus. We consider the mean number of fundamental steps (diffusion step and
directed motion along a microtubule step) that the virus needs to reach the nucleus
to be equal to n ≥ 0. Thus the mean time to reach the nucleus computed by (4.2) has

to be equal to the mean time τ =
∑n−1

k=0 ū(Rk)+ntm + 〈tr〉 of the iterative trajectory.
In a first approximation, we neglect the mean residual time 〈tr〉 and we thus get the
equality

t (B,R) = τ =
n−1∑
k=0

ū (Rk) + ntm,(4.4)

Rk+1 = rm (Rk) − dm,(4.5)

R0 = R.(4.6)

For a fixed radius R, equation (4.4) has a unique solution B, which can be found in
practice by any standard numerical method.

Remark. The MFPT of a particle in which the trajectory consists of alternating
drift (traveling along microtubules) and diffusion periods can be either higher or
lower than the MFPT of a pure Brownian particle. Indeed, when B < 0, the drift
effect is less efficient than pure diffusion. For example, for Θ = π

6 , R = 100μm,

and δ = R
4 = 25μm, a large diffusion constant D = 10μm2s−1 with the dynamical

parameters tm = 1s and dm = 1μm leads to a negative mean drift

(4.7) B ≈ −0.14μms−1.

On the other hand, for a small diffusion constant D = 1μm2s−1, an efficient mi-
crotubule transport obtained for tm = 1s and dm = 5μm leads to a mean positive
drift

(4.8) B ≈ 0.13μms−1.

4.2. Explicit expression of the drift in the limit of Θ � 1. When the
number of microtubules is large enough, the condition Θ � 1 is satisfied. Moreover,
because a virus entering a cell surface has a deterministic motion, we can assume that
the initial position satisfies R0 < R so that we can neglect any boundary effects and
use the open wedge approximation, which consists of using formula (3.30) without the
boundary layer term. Actually, this approximation is not that restrictive because after
the first iteration process (movement along the microtubule followed by the particle
release), the boundary layer term is negligible compared to the other term.

To obtain an explicit expression for the amplitude B, we consider the successive
approximations

(4.9) rm (R0) ≈ R0

(
1 +

Θ2

12

)
and
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R0 = R0;

R1 � R0

(
1 +

Θ2

12

)
− dm;

R2 � R0

(
1 +

Θ2

12

)2

− dm

(
1 +

(
1 +

Θ2

12

))
;

...

Ri � R0

(
1 +

Θ2

12

)i

− dm

(
i−1∑
k=0

(
1 +

Θ2

12

)k
)

;

that is,

(4.10) Ri �
(
R0 −

12dm
Θ2

)(
1 +

Θ2

12

)i

+
12dm
Θ2

.

Thus the particle reaches the nucleus after n iteration steps which approximatively
satisfies Rn = δ,

(4.11) n �
ln

(
1− δΘ2

12dm

1−R0Θ2

12dm

)
ln
(
1 + Θ2

12

) ≈ R0 − δ

dm
+ o (1) .

If Tn denotes the mean time a viral particle takes to reach the nucleus, then using
formula (3.9), we obtain

(4.12) Tn � n.tm +

(
tan(Θ)

Θ − 1
)

4D

n−1∑
i=0

R2
i ,

that is,

t � n.tm +

(
tan(Θ)

Θ − 1
)

4D

×
n−1∑
i=0

((
12dm
Θ2

)2

+ 2

(
12dm
Θ2

)(
R0 −

12dm
Θ2

)(
1 +

Θ2

12

)i

+

(
R0 −

12dm
Θ2

)2 (
1 +

Θ2

12

)2i
)
,

Tn � ntm +

(
tan(Θ)

Θ − 1
)

4D

×

⎛
⎜⎝n

(
12dm
Θ2

)2

−
(

24dm
Θ2

)(
R0 −

12dm
Θ2

) 1 −
(
1 + Θ2

12

)n

Θ2

12

+

(
R0 −

12dm
Θ2

)2 1 −
(
1 + Θ2

12

)2n

1 −
(
1 + Θ2

12

)2
⎞
⎟⎠ .
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For Θ � 1, a Taylor expansion gives that

Tn �
(
R0 − δ

dm

)
tm +

tm (R0 − δ)

24dm

(
1 +

R0 + δ

dm

)
Θ2

+
(R0 − δ)

72D

(
dm + 3 (R0 + δ) +

2
(
R2

0 + R0δ + δ2
)

dm

)
Θ4 + o

(
Θ4

)
.

In small diffusion limit D � 1, Θ � 1, the velocity is B � R0−δ
Tn

, and consequently
we obtain for R0 ≈ R a second order approximation,

(4.13) B ≈
dm

tm

1 +
(
1 + R+δ

dm

)
Θ2

24 + O (Θ4)
,

where dm, tm are the mean distance and the mean time a virus stays on the micro-
tubule, R (resp., δ) is the radius of the cell (resp., nucleus) and Θ = 2π

N , where N is
the total number of microtubules.

4.3. Justification of the MFPT criteria. To justify the use of the MFPT cri-
teria to estimate the steady state drift, we run numerical simulations of 1,000 viruses
inside a two-dimensional domain Ω (δ < r < R) with intermittent dynamics, alter-
nating between epochs of free diffusion and directed motion along microtubules, and
compare the steady state distribution with the one obtained by solving the Fokker–
Planck equation for viruses whose trajectories are described by the effective stochastic
equation (2.2) with our computed constant drift

(4.14) b (X) = −
dm

tm

1 +
(
1 + R+δ

dm

)
Θ2

24

r

|r| = −B
r

|r| .

We imposed reflecting boundary conditions at the nuclear and the external membrane.
The theoretical normalized steady state distribution ρ satisfies

DΔρ−∇.[bρ] = 0 in Ω,

dρ

dr
(R) =

dρ

dr
(δ) = 0,

and the solution ρ is given by

(4.15) ρ(r) =
e−

Br
D∫ R

δ
e−

Br
D 2πrdr

=
e−

Br
D

2πD
B (δe−

Bδ
D −Re−

BR
D + D

B (e−
Bδ
D − e−

BR
D ))

.

The result of both distributions is presented in Figure 4.1, where we can observe that
both curves match very nicely. This result shows that the criteria we have used is at
least enough to recover the distribution. For the simulations, we consider that the
directed run of the virus along a microtubule (loaded by dynein) lasts tm = 1s and
covers a mean distance dm = 0.7μm [13]. The diffusion constant is D = 1.3μm2s−1,
as observed for the adeno-associated virus [14]. The two curves in Figure 4.1 fit very
nicely except at the neighborhood of the nuclear membrane, where the simulation of
the empirical distribution is plagued with a possible boundary layer. Another source
of discrepancy comes from the difference of behavior of viruses far from and close to
the nucleus: viruses far from the nucleus do not bind as often as those located in its
neighborhood. Consequently, a constant effective drift cannot account for the radial
geometry near the nucleus. A theory for radius-dependent effective drift has been
derived in [15].
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Fig. 4.1. Steady state distributions. We show the empirical steady state distribution for 1,000
viral trajectories with an intermittent dynamic (solid line). The theoretical distribution of viruses
whose trajectories are described by the stochastic equation (2.2) is shown by the dashed line. Geo-
metrical parameters are R = 20μm, δ = 5μm, and Θ = π

24
.

5. Conclusion. For the limit of a cell containing an excess of microtubules,
we have presented here a model to describe the motion of biological particles such as
viruses, vesicles, and many others moving inside the cell cytoplasm by a complex com-
bination of Brownian motion and deterministic drift. Our procedure consists mainly
of approximating an alternative switching mode between diffusion and deterministic
drift epochs by a steady state stochastic equation; it also consists of estimating the
amplitude of the effective drift and is based on the criteria that the MFPTs to the
nucleus computed in both cases are equal. In that case, this amplitude accounts
for the directed transport along microtubules, the cell geometry, and the binding
constants. The model has, however, several limitations. First, we do not take into
account directly the backward movement of the virus along the microtubules [16, 17],
which can affect the mean time and the amplitude of the drift. Second, the present
computations are given only for two-dimensional cell geometry. It can still be applied
to many in vitro culture cells; however, it is not clear how to generalize our approach
to a three-dimensional cell geometry. For example, to study the trafficking inside
cylindrical axons or dendrites of neuronal cells, a different approach should include
these geometrical features. However, despite these real difficulties, the present model
may be used to analyze plasmid transport in a host cell, at the molecular level, which
is one of the fundamental limitations of gene delivery [18, 19, 20, 21].

Appendix. In this appendix, we provide an explicit computation of integral
(3.21) using the method of the residues. This method was previously used in a similar
context in [12, p. 386]. We denote by

(
pkj
)
j≥0

the poles of the function

Φ : s →
Ik (x (s) ∧ x0 (s))

(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

)
(x (s) ∨ x0 (s))

sI
′
k (x+ (s))

est,
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where (x (s) = r
√

s
D , x0 (s) = r0

√
s
D , and x+ (s) = R

√
s
D ). The associated residues

are
(
rkj
)
j≥0

. We now compute the residues explicitly.

To identify the poles, we recall the relation between the k-order Bessel function
Jk (that is true for z such that −π < arg (z) < π

2 ) and the modified Bessel functions
Ik [11, p. 375]:

(5.1) Ik (z) = e−
1
2kπiJk

(
ze

1
2πi

)
.

All roots αj,k of the equations

J
′

k (Rα) = 0

are real, simple, and strictly positive [11, p. 370] because k is real and

k ≤ α1,k < α2,k . . . .

Thus,

I
′

k (−iRαj,k) = 0.

Finally, the poles of Φ are simple, given by pk0 = 0 and that for all j ≥ 1, pkj = −Dα2
j,k.

Consequently the associated residues are given for each k for all j ≥ 0 by

(5.2) rkj = lim
s→pk

j

(
s− pkj

)
Φ(s).

Then using the residues, integral (3.21) is given by

I (r, θ, t) =
1

ΘπDi

∑
k

sin (kθ) sin (kθ0) (2πi)
∑
j≥0

rkj =
2

ΘD

∑
k

sin (kθ) sin (kθ0)
∑
j≥0

rkj .

We now compute the residues rkj . The residue rk0 is associated with the pole pk0 = 0
and given by

rk0 = lim
s→0

sΦ(s).

Using the following identities on the modified Bessel functions [12, p. 489],

I
′

k (z) = Ik+1 (z) +
k

z
Ik (z) and K

′

k (z) = −Kk−1 (z) − k

z
Kk (z) ,

and substituting the derivatives I
′

k and K
′

k in the expression of Φ, we get

rk0 = lim
s→0

Ik (x (s) ∧ x0 (s))(
Ik+1 + k

x+(s)Ik

)
(x+ (s))

×
(((

Ik+1 +
k

x+ (s)
Ik

)
(x+ (s))Kk

)

+

((
Kk−1 +

k

x+ (s)
Kk

)
(x+ (s)) Ik

))
(x (s) ∨ x0 (s)) .
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Taking into account only the dominant terms, we get

rk0 = lim
s→0

Ik (x (s) ∧ x0 (s)) (Ik (x+ (s))Kk + Kk (x+ (s)) Ik) (x (s) ∨ x0 (s))

Ik (x+ (s))
.

To further compute this limit, we use the Taylor expansions of Ik and Kk [11, p. 375]
expressed in terms of the Γ function:

Ik (z) ≈
(

1
2z

)k
Γ (k + 1)

and Kk (z) ≈ 1

2
Γ (k)

(
1

2
z

)−k

.

For r < r0, we get

rk0 = lim
s→0

( 1
2
(x(s)))k

Γ(k+1)

(
( 1
2 (x+(s)))k

Γ(k+1)
1
2
Γ (k)

(
1
2

(x0 (s))
)−k

+ 1
2
Γ (k)

(
1
2

(x+ (s))
)−k ( 1

2
(x0(s)))k

Γ(k+1)

)
( 1
2 (x+(s)))k

Γ(k+1)

.

Finally, using the relation Γ (k + 1) = kΓ (k) and the expressions of x(s), x0(s), and
x+(s), we get

rk0 =
rk

(
r2k
0 + R2k

)
2kR2krk0

.

The computation of the other residues
(
rkj
)
j≥1

is slightly different,

rkj = lim
s→pk

j

(
s− pkj

)
Φ(s),

where pkj = −Dα2
j,k. Using the Wronskian relation [12, p. 489],

Ik (z)K ′
k (z) −Kk (z) I ′k (z) = −1

z
,

we now substitute

K
′

k (z) =
− 1

z + Kk (z) I
′

k (z)

Ik (z)
.

In the expression of Φ, we get

rkj = lim
s→pk

j

(
s− pkj

)
est

s

Ik (x (s))
(
I

′

k (x+ (s))Kk −
(− 1

x+(s)+KkI
′
k

Ik

)
(x+ (s)) Ik

)
(x0 (s))

I
′
k (x+ (s))

.

Because

lim
s→pk

j

I
′

k (x+ (s)) = I
′

k

(
x+

(
pkj
))

= 0,

we obtain the expression for the residues:

rkj =
ep

k
j t

pkj

Ik
(
x
(
pkj
))

Ik
(
x0

(
pkj
))

Ik
(
x+

(
pkj
))

x+

(
pkj
) lim

s→pk
j

(
s− pkj

)
I

′
k (x+ (s))

.
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Finally, since

lim
s→pk

j

(
s− pkj

)
I

′
k (x+ (s))

=
2
√
Dpkj

R
lim
s→pk

j

x+ (s) − x+

(
pkj
)

I
′
k (x+ (s)) − I

′
k

(
x+

(
pkj
)) =

2
√
Dpkj

RI
′′
k

(
x+

(
pkj
)) ,

we obtain

rkj =
ep

k
j t

pkj

Ik
(
x
(
pkj
))

Ik
(
x0

(
pkj
))

Ik
(
x+

(
pkj
))

x+

(
pkj
) 2

√
Dpkj

RI
′′
k

(
x+

(
pkj
)) .

To simplify this expression, we use that Ik satisfies the differential equation [11, p. 374]

I
′′

k (z) +
1

z
I

′

k (z) −
(

1 +
k2

z2

)
Ik (z) = 0.

Thus for z = x+

(
pkj
)
,

I
′′

k

(
x+

(
pkj
))

=
pkjR

2 + Dk2

pkjR
2

Ik
(
x+

(
pkj
))

.

We get

rkj =
2Dep

k
j t

R2pkj + Dk2

Ik
(
x
(
pkj
))

Ik
(
x0

(
pkj
))

I2
k

(
x+

(
pkj
)) ,

and finally, using (5.1), we get

rkj =
2e−Dα2

j,kt

−R2α2
j,k + k2

Jk (rαj,k)Jk (r0αj,k)

J2
k (Rαj,k)

.

Integral (3.21) is given by

(5.3) I(r, θ, t) =
2

ΘD

∑
k

sin (kθ) sin (kθ0)
∑
j≥0

rkj =
2

ΘD
(S1(r, θ, t) + S2(r, θ, t)) ,

where

S1(r, θ, t) =
∑
k

sin (kθ) sin (kθ0)
rk

(
r2k
0 + R2k

)
2kR2krk0

,

S2(r, θ, t) = −2
∑
k

sin (kθ) sin (kθ0)

∞∑
j=1

e−Dα2
j,kt

Jk (rαj,k)Jk (r0αj,k)(
R2α2

j,k − k2
)
J2
k (Rαj,k)

.
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