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A paradigmatic model
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Key quantities:
Ro= PB/V is the fitness of the pathogen

|/Y is the mean duration of immunity




A paradigmatic model

BSI/Q) Vi
I/ﬂ
\ YR

Basic assumptions: Improve realism:
Closed population Latent period, seasonal
Homogeneous mixing forcing, gamma durations,
Exponential durations heterogeneous mixing etc.
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Typical stochastic
trajectory
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Stochastic extinctions (1/3)
Failed invasion
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before passing on the
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Stochastic extinction (2/3)
Epidemic fade-out
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Depletion of the B Stochastic (Exemple)
susceptible pool after
a major outbreak
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Stochastic extinction (3/3)
Endemic fade-out
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Quantitative characterization of
the dynamics (1/2): Monte-Carlo
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Quantitative characterization of
the dynamics (1/2): Monte-Carlo
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Good accuracy & simple implementation

BUT

Computationnaly (very) intensive
(ex: exploration of parameter space)
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Quantitative characterization
of the dynamics (2/2):
Analytical approximations

|

WKB theory =1 || Diffusion approximation
(Meerson 2009) (Nasell 2002)
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Quantitative characterization
of the dynamics (2/2):
Asymptotic approximations

Simple models
and large
populations

Only far from the
absorbing boundary 1=0

Good accuracy




Qualitative characterization
of the dynamics: basic idea

—— Deterministic
—— Mean (sto.)
- = 99% quantile (sto.)

Transition from invasion to long-term
persistence: «How close are we to 0?»




Qualitative characterization
of the dynamics: basic idea

We use an ODE-based (fast) and
automatized (wide application) method to
characterize the stochastic dynamics from

invasion to long-term persistence




Master equation

Cannot be solved

analytically due to

nonlinearity of the HP(S—-1,1, R+ 1,1)
contact process

—(5Sé + yI+vR>P(S, I, R,t)




Notations s+1%%r

Species vector (size: N)
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Linear Noise Approximation

We define: and assume:

o= lim x X = Q¢ + VQE

()— 00

Following a Taylor expansion of the ME in powers of
1/+/Q, we find at the next to leading order:




«How close are we to 0?»

Since I; = Q@ (t) + VQE we have:

I, < /\/(9@ (1), QEQQ(t))

We define: I = Q¢ (t) — Q,1/NZ22(t) as the lower bound of the p-quantile of
the distribution. In practice we choose p = 99% and thus Qggy =~ 2.6

We neglect the extinction probability whenever I > 0 and simply define the
critical population size at time ¢, 27, such that I =0

I} =0& Q) =




«How close are we to 0?»

Endemic:
analytical solution

Transient:
numerical integration
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rove realism: gamma

distributions
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Summary & Outlook

® Linear Noise Approximation: Fast &
Automatized for complex models

® Evaluate stochastic fluctuations around the
deterministic trajectory (stability analysis)

® Which regions of the parameter space (do
not) require stochastic simulations?

® Qualitative & quantitative information on the
stochastic dynamics




Summary & Outlook

® |mproving realism: seasonal forcing (but no
equilibrium), immigration (how to define
extinction), more than 2 R classes (Hopf
bifurcation of the endemic equilibrium)

® The linear noise approximation can also be
used to derive the power spectral density
of the endemic fluctuations




