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1 Text S1: Model details

1.1 Gamma distributions for the E, I and R states

Stochastic epidemiological models, such as the ones presented in this study, are commonly based on the continuous-time

and discrete state-space Markov chains theory. Within this formalism, the duration of each epidemiological state (exposed,

infectious, removed) is naturally exponentially distributed. However, the exponential distribution is usually criticized on

the grounds of biological realism since it is restrictive in the shape of distribution it can represent. Although this limitation

is commonly ignored in analytical studies of epidemiological models, our statistical analysis of a real dataset call for a

more realistic alternative. The gamma distribution is a good candidate to improve realism since its flexibility range from

the simple exponential distribution to the normal distribution at the expense of only one additional shape parameter k.

From a biological point of view, it allows for realistic bell-shaped distribution of biological durations whenever k > 1.

Within the discrete state-space formalism, the gamma distribution with mean m and shape k is modelled by k consecutive

exponential distributions with mean m/k and is called the Erlang distribution due to the integer value of k. Such Erlang

distribution has a mean equal to m and a variance equal to m/k.

In all six models, the residence times into the exposed (E), infective (I) and temporary removed (R) states follow

Erlang distributions with shapes kE , kI and kR and means 1/ε,1/ν and 1/γ respectively. For simplicity these distributions

are not explicitly represented in the main paper and we refer to the Table S1 for a comprehensive interpretation of the

Fig 2.

However, unlike other parameters, statistical inference of these shape parameters is combinatorial and thus computa-

tionally intractable (see Text 2 for more details). To address this issue, we performed several tests to explore the sensitivity

of the maximized log-likelihood as well as the maximum likelihood parameter estimates regarding these shape param-

eters. We found weak sensitivity of these quantities to the values of kE and kI but notable effect of kR. Indeed, the

distribution of the time elapsed in the removed state (R ), between the first and second attack, is expected to play a crucial

role in the shape and the timing of the second epidemic wave.

Thus, we chose to fix kE = kI = 2, which is the minimal value to have a realistic bell-shaped distribution and the

maximal value to perform analytical calculation (Text 5), and to infer kR for each model (Table S2). Our choice is even

more justified because, unlike the E and I states, the R state has different biological interpretations depending on the

model considered. Indeed, while in the temporary removed state, hosts do not participate to the transmission process i.e.

they cannot transmit or be reinfected. For the single-strain hypotheses (AoN, PPI and Win models) it mostly corresponds

to the protective effect of the specific cellular immune response (see Immunological discussion in the main paper) whereas

for the InH model it shapes the intra-host reinfection dynamics. In contrast, for the two-strain hypotheses (2Vi and Mut

models) it should represent the time spent in confinement recovering because specific immunity to one strain is not

expected to be fully protective against the other, antigenically differing strain. Although these two-strain models cannot

be retained as best explanation of our dataset, we note good agreement between the estimated duration of the R state and

the original report by Mantle and Tyrrell: “In mild illness the patient was not confined to the house or to bed for more

than a day.” [1].
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Table S1: Interpretation of the Erlang distribution (with shape k and mean 1/λ) as represented in Figure 2 of the main
paper.

Representation (main paper) Interpretation

K
λ

K1
... Kk

kλ kλ kλ

K
αλ

(1− α)λ

K1
... Kk

kλ kλ αkλ

(1− α)kλ

Table S2: Maximum likelihood estimates for the shape kR and the mean 1/γ of the Erlang distribution of the duration in
the R state

Model Win AoN 2Vi Mut InH PPI
kR 5 4 2 6 9 9
1/γ (days) 13.61 11.57 0.64 1.07 5.72 15.90

1.2 Identifiability of the 2Vi and Mut models

Both 2Vi and Mut hypotheses share the same 2-strain history-based model. The general formulation of this model allows

different epidemiological parameter values for each strain: βi, εi, νi, γi as well as a cross-immunity parameter σ between

the two strains. However, since the original paper by [1] reported that people infected by one of these two viruses formed

“a fairly homogeneous group, epidemiologically speaking” and in order to reduce the parameter space of our models, we

forced both strains to have the same latent (εi = εj), infectious (νi = νj) and temporary resistance (γi = γj) periods.

On another hand, there is a structural non-identifiability issue between β1, β2 and σ as these parameters multiply each

other [2]. Accordingly, fixing one of these parameters has no effect on the value of the maximized likelihood whereas it

decreases the AIC of the model [3]. For the Mut model, we chose to fix β1 = β2 (and thus R1
0 = R2

0 since ν1 = ν2

and Ri0 = βi/νi) and to estimate the cross-immunity parameter σ. This choice is justified since i) the mutated strain

is expected to have a R0 similar to that of the initial strain and ii) we are mainly interested in the antigenic change

conferred by the mutation event and measured by the percentage of antigenic escape σ. In contrast, the 2Vi model

assumes that two different viral agents were introduced at the beginning of the epidemic. We can thus precisely estimate

the transmissibility of each virus since there is no biological reason to consider some degree of cross-immunity between

the two viruses (σ = 1).

1.3 Alternative modelling of the cross-immunity in the Mut model

A commonly used framework to model the dynamics of co-circulating influenza-strains conferring partial cross-immunity

is the history-based formalism introduced by Andreasen et al. [4]. Within this formalism, hosts are classified according to

their infection history and cross-immunity acts by reducing the susceptibility (RS) to further strains. In our main paper,

the mutation hypothesis was modelled using a two-strain history-based formalism and hosts already infected by strain i
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have their susceptibility to strain j reduced by a factor σ ∈ [0, 1] (the higher is σ the lower is the cross-immunity i.e. the

more distant are the two strains, see Fig. S1A). However, an alternative approach to the RS modelling is the polarized

immunity (PI) introduced by Gog et al. [5]. Within this framework, each host already infected by a strain i is either

entirely susceptible to strain j or completely immune to it. In the case of our simple 2-strain hypothesis, the PI can simply

be modelled as in Fig. S1B: following recovery from strain i, hosts remain fully susceptible to the other strain j with

probability σ (entering the Li class) otherwise they become completely protected (entering the L12 class). Because these

two cross-immunity hypotheses have been previously used for influenza (see references [5, 6] for a complete discussion)

we performed a maximum likelihood analysis of our dataset with both models (Fig. S1). We found that the RS hypothesis

(Fig. S1A, L(θML) = −115.24) has a higher log-likelihood than the PI hypothesis (Fig. S1B, L(θML) = −117.99) which

has furthermore the worst ∆AICc(= 13.91) among the competing models. Although we focused, for simplicity, on the RS

hypothesis in the main paper we contend that this likelihood discrepancy between the two cross-immunity hypotheses is

somewhat surprising and deserve to be discussed. In particular, the maximum likelihood parameter estimates under these

two models notably differ for the basic reproduction number R0 and the level of cross-protection σ which are crucial

epidemiological quantities (Table S3). Although neither of these two hypotheses can be retained to explain the dataset,

these results come echoing the main paper and stress the sensitivity of parameter inference and model selection regarding

the underlying biological assumptions.

A

S Ei Ii Ri Li

Iji Ej
iRj

iL12

λi ǫ ν γ

σλj

ǫνγ

B

S Ei Ii Ri Li

Iji Ej
iRj

iL12

λi ǫ ν σγ

(1− σ)γ
λj

ǫνγ

Figure S1: The two Mut models. (A) The reduced susceptibility hypothesis of Andreasen et al. [4]. (B) The polarized
immunity hypothesis of Gog et al. [5]
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Table S3: Comparison of the maximum likelihood parameter estimates for the Mut model with either polarized immunity
(PI) or reduced susceptibility (RS)

Parameter Description PI hyp. RS hyp.
R0 = β/ν basic reproduction number 20.41 9.16
1/ε mean latent period (days) 2.69 2.38
1/ν mean infective period (days) 1.94 1.01
1/γ mean temporary removed period (days) 16.84 1.07
1− σ cross-immunity between the two strains 0.41 0.82
ρ reporting rate for observation 0.72 0.69
Tmut emergence time of the new variant 8/27 8/24

L(θML) maximized log-likelihood -117.99 -115.24
AICc corrected Akaike information criterion 260.56 255.06
∆AICc rescaled AICc 13.91 8.41

1.4 Note on the window-of-reinfection duration

In contrast to the residence times in theE, I andR states, the duration of the reinfection windowW in the Win hypothesis

was modelled using an exponential distribution. We contend that this choice is not only motivated by parsimony but also

by profound modelling arguments: only hosts with a delayed humoral immune response are expected to experience this

window-of-reinfection. The advantage of the exponential distribution relies on its nonzero density for the null duration:

this implicitly account for host heterogeneity as some hosts with rapid humoral response directly enter the L state. As

shown in Fig S2 the Erlang distribution has not such property and as expected, the use of this distribution decreased the

likelihood of the Win model (data not shown).
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Figure S2: Differences in the density (A) and distribution (B) functions between the exponential (black solid line) and the
Erlang distribution (coloured dashed lines). All distributions have the same mean m = 4.8 days and we tested different
shape parameter k ∈ {2, 3, 5, 10} for the Erlang distribution.
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1.5 Transition rates

The Markov Chain events and their transition rates used to stochastically simulate the six models are presented in Ta-

bles S4 and Tables S5. The column Event describes the transition, the column Change indicates which compartments

are modified and how, the column Rate shows the rate associated with the corresponding transition and the column

Comments specifies the distribution for waiting times as well as information on parameters. For simplicity Erlang distri-

butions for waiting times in classes E, I and R are not explicitly represented. In the main paper, Erlang distributions with

shape equal k are modelled by k exponential distributions, each exponential rate being equal to k-times the rate reported,

as explained in Table S1. All models were simulated using Gillespie’s exact algorithm [7] and were implemented in C

using the standalone math library from R [8] for random number generation.

Table S4: Stochastic events for the 2 Virus (2Vi ) and the Mutation (Mut) models : (i, j) ∈ {1, 2}2 and i 6= j. Upper
index corresponds to the infective strain, lower index corresponds to the immunized strains. Coinfection is not allowed.

Event Change Rate Comments

Infection (S,Ei)→ (S − 1, Ei + 1) βiS(Ii + Iij)/N Mut : βi = β

Infectivity
(Ei, Ii) → (Ei − 1, Ii + 1)
(Eij , I

i
j)→ (Eij − 1, Iij + 1)

εEi

εEij
Erl(k = 2)

Removing
(Ii, Ri) → (Ii − 1, Ri + 1)
(Iij , R

i
j)→ (Iij − 1, Rij + 1)

νIi

νIij
Erl(k = 2)

Long-term immunity
against reinfec-
tion by the same
virus/variant

(Ri, Li) → (Ri − 1, Li + 1)
(Rij , Lij)→ (Rij − 1, Lij + 1)

γRi

γRij

2Vi : Erl(k = 2)
Mut : Erl(k = 6)

Reinfection by the
other virus/variant (Li, E

j
i )→ (Li − 1, Eji + 1) σβiLi(I

j + Iji )/N
2Vi : σ = 1
Mut : βi = β

Emergence of the
new variant (I1, I21 = 0)→ (I1 − 1, I21 = 1)

Punctual change at
time t = Tmut, con-
ditioned by: I1 > 0

Only for Mut
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Table S5: Stochastic events for the All or Nothing (AoN ), Partially Protective Immunity (PPI ), Intra-Host reinfection
(InH ) and Window of reinfection (Win) models

Event Change Rate Comments

Infection (S,E)→ (S − 1, E + 1) βSI/N –

Infectivity (E, I)→ (E − 1, I + 1) εE Erl(k = 2)

Removing (I,R)→ (I − 1, R+ 1) νI Erl(k = 2)

Return to the
susceptible
state

(S,R)→ (S + 1, R− 1) (1− α)γR
Only for AoN
Erl(k = 4)

Reinfection
window (R,W )→ (R− 1,W + 1) γR

Only for Win
Erl(k = 5)

Reinfection
PPI : (L,E)→ (L− 1, E + 1)
InH : (R, I)→ (R− 1, I + 1)
Win: (W,E)→ (W − 1, E + 1)

PPI : σβLI/N
InH : (1− α)γR
Win: βWI/N

InH : Erl(k = 9)

Long-term
protective
immunity

AoN, InH, PPI : (R,L)→ (R− 1, L+ 1)
Win: (W,L)→ (W − 1, L+ 1)

AoN, InH : αγR
PPI : γR
Win: τW

AoN : Erl(k = 4)
InH : Erl(k = 9)
PPI : Erl(k = 9)

1.6 Choice of the observation process

In the main text, we have assumed that the observation process followed a Poisson distribution. It is straightforward to

test whether this assumption is suitable for the epidemic under study. We used the negative binomial distribution (NB)

as an alternative to the Poisson distribution. The NB is especially useful when the observations are overdispersed with

respect to a Poisson distribution, for which the mean is equal to the variance. Since the NB has one more parameter

than the Poisson, the second parameter can be used to adjust the variance independently of the mean. We thus performed

log-likelihood profiles on this extra parameter (one for each of the six models) to assess whether this parameter was

significantly different from 0 (in this case the NB tends to the Poisson distribution). As shown in Figure S3, we find that

the maximum likelihood for the overdispersion parameter is 0 for all six models, which justifies the use of the Poisson

distribution.
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Figure S3: Log-likelihood profiles of the overdispersion parameter assuming a negative binomial distribution (NB) of
the observation process. The maximum likelihood estimate for this parameter is indicated by a red line and the 95%
confidence intervals by a black dashed line (note the log-scale on the x-axis). For all six models, the maximum likelihood
estimate is approached as the overdispersion parameter tends to 0 (note that the NB is not defined when the overdispersion
parameter is 0) so that the NB tends to the Poisson distribution.

2 Text S2: Maximum likelihood via Iterated Filtering (MIF)

For a time series y1:T of T successive observations and a model Hi with parameter vector θ, the likelihood is given by the

identity L(θML|Hi) := P (y1:T |θ,Hi) =
∏T
t=1 P (yt|y1:t−1, θ,Hi), i.e. by the product of the conditional likelihoods at

each observation time t. The challenge is to find the maximum of the likelihood as a function of θ.

For our nonlinear stochastic dynamical models (also known as state-space models) the likelihood function is ana-

lytically intractable but maximization can be achieved through a numerical method – Maximum likelihood via Iterated

Filtering (MIF) – proposed by [9] (see also [10]). In particular, MIF allows to estimate the conditional likelihood at

successive observation times and we used such decomposition in Figure 3 of the main paper.

We refer to the references [9, 10] for a complete description of MIF. In the following we only precise our parame-

terization of the MIF algorithm as well as the different procedures we used to explore the likelihood surface, to assess

convergence and to compute confidence intervals.

For all procedures and all models we used the same initial variance multiplier c2 = 25 and the same discount factor

α = 0.95 [9].

We defined lower and upper bounds for each parameter, based on biological realism, and we used the arctan function

in order to transform the bounded parameter space into an unbounded one, as required by the MIF algorithm. The variance

for the mutation process of each parameter in the unbounded space is equal to 1/4n [9], where n is the number of data

points in the time series (n=59). We used a Gaussian perturbation kernel for the mutation process.

During the first 5 iterations of each MIF we used the simple average updating rule proposed by [9] to improve algo-

rithm stability.
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For each model we proceeded in 2 steps to reach the maximum likelihood (ML) parameter estimate:

Step 1 Ten crude MIFs with different initial parameter values and wide parameter bounds (see Table S11), 104 particles

and 150 iterations. For all models, identical parameters have the same lower and upper bounds. This step allows to

localize the global maximum of the likelihood surface.

Step 2 A refined MIF with parameter bounds centred on the ML parameter estimates from Step 1, 105 particles and 200

iterations. This step allow to precisely reach the global maximum of the likelihood surface.

For each step, diagnostic was realized using a convergence plot [9]. Maximum likelihood convergence of Step 2 was

assessed by log-likelihood profiles that allow to separate the global maximum from local maxima.

Since MIF is based on a sequential Monte Carlo (SMC) algorithm, both ML estimates for parameters and maximized

log-likelihood (l(θML|Hi)) are subject to Monte Carlo variability. In order to handle such inherent variability, the values

presented in Figure 4 (see main paper) were obtained as the mean of 10 replicates of the Step 2 procedure for each model,

allowing us to compute the Monte Carlo standard deviation of these estimates (σMC). For all models, both ML estimates

for parameters (see Table S11) and l(θML|Hi) (see Table S6) have σMC on the order of 10−2 or smaller which indicates

that the number of particles (105) is large enough to neglect the Monte Carlo variability in the model comparison.

Approximate 95% confidence intervals (CI) for all parameters were computed using the procedure detailed in [11].

For a given parameter p and a given model Hi, we computed the log-likelihood profile λHi
(p) by fixing p to several

values and maximizing the log-likelihood over all parameters excluding p. The profile was then smoothed using a non-

parametric regression. Maximum likelihood convergence was confirmed by comparing the estimate of p in Step 2 with

p̂ = argmax(λHi
(p)). Lower and upper bounds for an approximate 95% confidence interval are given by {p : 2[λHi

(p̂)−

λHi
(p)] < χ2

0.95(1)} where χ2
0.95(1) is the 0.95 quantile of a χ2 random variable with one degree of freedom.

For the Mut model, the time of emergence of the second strain (parameter Tmut) cannot be inferred throughout the

time series. We thus performed a log-likelihood profile on Tmut and we fixed its value to the argmax of the profile for

precise inference of the remaining parameters. Guided by the lowest level of influenza incidence observed between waves

in the data, Tmut was considered to have occurred sometime between August 21 and September 8.

Similarly, the values for the shape parameters kE , kI and kR cannot be inferred throughout the time series since

changing the shape of the Erlang distributions modify the number of intermediate compartments. Indeed, if the shape of

a class C changes from ktC to kt+1
C between times t and t + 1 there is no way to divide or rearrange the population from

the ktC compartments into the new kt+1
C compartments. Accordingly, the only way to infer the shape k is to perform a

log-likelihood profile over all its possible values. However, because we must simultaneously infer 3 shape parameters (for

the E, I and R classes), the rigorous way to do this is to perform a 3-dimensional log-likelihood profile of complexity

kmaxE × kmaxI × kmaxR , where kmaxC is the upper bound of the 3D profile in the direction of the shape of class C. For

example, fixing kmax. = 10 results in 6000 simulations of the MIF algorithm for all six models. After several sensitivity

tests (see Text 1.1), we choose to fix kE = kI = 2 and to perform a likelihood profile over kR ∈ [1, 20].

The MIF algorithm was implemented in C using the standalone math library from R [8] for random number generation

and probability law distributions (code available upon request). A numerical implementation of MIF is also available via

the software package pomp [12] which operates in the free, open-source, R computing environment [8].

9



Table S6: Likelihood of all six models. l(θiML|Hi) is the maximized log-likelihood, estimated by sequential Monte Carlo
and σMC is the Monte Carlo standard deviation of this estimate. k is the number of inferred parameters plus initial
conditions.

Model k = |θ| l(θML|Hi) σMC

Win 9 -112.49 0.03
AoN 9 -112.78 0.02
2Vi 10 -114.61 0.03
Mut 10 -115.24 0.04
InH 9 -117.42 0.04
PPI 9 -118.44 0.03

3 Text S3: Detailed analysis of the model selection based on Akaike Informa-

tion Criterion

The Akaike Information Criterion (AIC) is a measure of the amount of information about the observed data that is con-

tained in a single, fitted mathematical model [13]. It is defined by

AICi = −2l
(
θML

∣∣Hi

)
+ 2k,

where θML is the maximum likelihood point estimate of the unknown model parameters θ of model Hi, and k describes

the dimensionality of Hi. Intuitively, the above equation conveys that the AIC penalizes against model complexity as

measured by k. More complex models Hj attain a higher value AICj only if the difference in the numbers ki, kj is

compensated by a better log-likelihood fit to the data.

AIC is a statistical quantity based on the observed data points; it estimates a well-defined information-theoretic cri-

terion of model fit that implicitly penalizes model complexity. Under certain regularity conditions, AIC is an unbiased

estimator of this quantity when k is set to the number of parameters in the model [13]. When the number of data points T

is low relative to k (T/k < 40), a second-order correction is commonly used,

AICic = −2l
(
θML

∣∣Hi

)
+ 2k +

2k(k + 1)

T − k − 1
,

to reduce/ eliminate the bias of AIC to the information-theoretic criterion it seeks to estimate [14]. Here k is set to the

number of model parameters and T is the number of time series points. In many practical situations, the potential bias

and the variance of different AIC statistics is not known. Nevertheless, AIC has proven to be a very efficient measure to

distinguish between models [14].

To compare different models Hi in a given set of candidates H = {H1, . . . ,HN}, it is common to consider the

differences

∆i = AICic −min
j

AICjc
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or the so-called Akaike weights

ωi =
exp(−∆i/2)∑
h∈H exp(−∆h/2)

,

from which “evidence ratios”

ω1/ωi

between the best model H1 and each competing model Hi can be computed. Table S7 lists the respective values of each

of these quantities for the models considered in this study. These values allow us to rank our models: the Win model is

closely followed by the AoN model, and all other models are trailing substantially behind.

The differences ∆i can be interpreted as an estimate of the information loss experienced when using the fitted model

Hi rather than the best model, H1. Based on this interpretation, the following rules of thumb have been proposed [14]:

modelsHi with ∆i ≤ 2 have substantial support, those with 4 ≤ ∆i ≤ 7 have considerably less support, and models with

∆i > 10 have essentially no support under the data considered. Under the same interpretation, the evidence ratios can be

regarded as betting odds, and support the fact that relatively small differences in ∆i may convey significant differences

in model performance [14]. Regarding our study, Table S7 suggests that the selected best model is not convincingly best:

the evidence ratio for the Win model versus the AoN model is only 1.337. However, given the data considered in this

study, we must conclude that it is extremely unlikely that one of the remaining models provides an adequate explanation

of the Tristan da Cunha time series (evidence ratio > 34).

Table S7: Detailed analysis of the model selection based on Akaike Information Criterion (AIC)

Model AICic ∆i Akaike weight ωi Evidence ratio ω1/ωi

Win 246.65 0 0.555 1
AoN 247.23 0.58 0.415 1.337
2Vi 253.80 7.15 0.016 34.688
Mut 255.06 8.41 0.008 69.375
InH 256.51 9.86 0.004 138.750
PPI 258.55 11.90 0.002 277.500

4 Text S4: Detailed evaluation of the predictions of the six epidemiological

models

The Akaike Information criterion is very efficient in discriminating between the fitted models on the reported Tristan da

Cunha time series (see Table S7). Moreover, the difference between the Win and AoN model does not appear to be

substantial.

This begs the question if the differences are due to different model behaviour during the characteristic second wave

on Tristan da Cunha, which is the focus of this study. Alternatively, do these differences accumulate across the entire

time series? Decomposing the maximized log-likelihood into conditional log-likelihoods (Figure 3A-E, lower panels),

we showed that the differences in the log likelihoods (and thus AIC) accumulate during the second epidemic wave and

11



the extinction period after the second wave.

To investigate if the differences in AIC correspond to visible, practically significant differences in reproducing the

second wave, we performed the following predictive checks. We simulated 105 time series under each of our six ML-

fitted models. Figure 3 in the main text qualitatively compares the mean behaviour of the best model (Win) with each

competitor. Since the six models have very different extinction probabilities during the low-prevalence inter-wave period

(Figure 3F), it is natural to separate our simulations between those that have gone extinct before the second wave and the

surviving. The information on extinction is summarized in Figure 3F while Figure 3 A-E (upper panels) shows the mean

as well as the 95% confidence envelope of the dynamics conditioning on the occurrence of a second epidemic wave.

More precisely, for each model, we removed from the 105 simulated incidence time series all those with at least one 0

between day 28 and 35. Indeed, this time interval corresponds to the peak of the second epidemic wave. Finally, we used

the remaining time series, which form an empirical distribution of the observed incidence, to compute the mean and the

2.5–97.5 percentile of the daily incidence. Although these 95% confidence envelopes are wide and contain all the data

points (for our two best models Win and AoN), qualitative differences between the six models remain apparent during the

second epidemic wave. Here, we supplement a suite of quantitative analyses, based on the same predictive simulations,

to compare the ability of our six models in reproducing the observed incidence time series.

First, we investigated the independency of the mean standardized predicted residuals

ε̂t = [yt −
N∑
i=1

xt,i/N ]/[

N∑
i=1

x2t,i/N − (

N∑
i=1

xt,i/N)2]1/2

where yt is the observed incidence (data) at time t, xt,i is the prediction at time t for realization i and N is the number of

simulated time series with a second epidemic wave. Figure S4 shows that the residuals ε̂t of all models, except Win and

AoN, present significative autocorrelation (p-value < 5% for rank autocorrelation test via the function AutocorTest from

the R [8] package FinTS).
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Figure S4: Plot of the autocorrelation function of the standardized residuals ε̂t for the prediction of each ML-fitted model
(function Acf from the R [8] package FinTS).

Second, we quantified the differences between the ML-fitted model in reproducing specifically the characteristic

second wave infection dynamics on Tristan da Cunha. A standard approach is to perform a goodness-of-fit test that checks

model behaviour with respect to a test statistic T . Here, we will consider two test statistics jointly, Tw corresponding to

the second wave and Te corresponding to the extinction period after the second wave. Tw and Te are simply defined as

particular parts of the full time series y1:T ,

Tw(y1:T ) = yt21:t36 , Te(y1:T ) = yt52:t59 .

Furthermore, to enable a comparison of the predictive checks across models, we will synchronize the goodness-of-fit tests

across all Hi, i = 1, . . . , N .

Goodness-of-fit tests typically calculate a tail area probability under the hypothesized model Hi to quantify the ex-

tremeness of the observed value T (y1:T ). The common approach is to "repeat" the data observation process in a "thought

experiment" under Hi and the fixed value of θ that produced y1:T to derive the reference distribution of T , and to locate

T (y1:T ) on that reference distribution. In our case, it is not possible derive the reference distribution analytically. A

simulation-based solution in spirit of frequentist goodness-of-fit tests is to sample replicate data x1:T from the predictive
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distribution defined by

m
(
dx1:T

∣∣Hi, y1:T
)

= Prob
(
dx1:T

∣∣θML, Hi

)
;

see also [15]. Here, we obtained samples from the reference distribution of the two test statistics Tw, Te with the following

simulation scheme:

1. Simulate a time series replicate x1:T under the fitted model Hi, x1:T ∼ Prob( · |θML, Hi

)
.

2. Evaluate and record Tw(x1:T ), Te(x1:T ).

3. Go to 1.

To compare parts of the simulated and observed time series with a single real number, we will use a default distance

d : Tw(y1:T )×Tw(x1:T )→ R, and likewise for Te. Since d
[
Tw(y1:T ), Tw(x1:T )

]
= 0 if and only if Tw(y1:T ) = Tw(x1:T )

and likewise for Te, we are left to quantify the extremeness of the point (0, 0) with respect to our samples from the above

reference distribution. Our default distance corresponds to a weighted L2 norm,

d[xt1:tn , yt1:tn ] = sgn
(
median(xti − yti)

) n∑
i=1

ω (xti − yti)2.

If the majority of the pointwise distances xti − yti is positive (negative), d will be positive (negative). For example, d

is negative if the simulated second wave lies "below" the observed second wave. The weight ω ∈ [0, 1] accounts for the

number of data points and the frequency f of the pointwise differences xti − yti and is set to ω = 1/nf2. Here, f is

computed as 1 plus the number of times the pointwise differences switch sign. To illustrate d, suppose we observed a

time series y1:7 = (1, 3, 5, 7, 5, 3, 1) and two replicate time series x11:7 = (3, 5, 7, 9, 7, 5, 3), x21:7 = (3, 5, 3, 5, 7, 5, 3);

x11:7 is consistently above y1:7 and x21:7 oscillates around y1:7. While the squared differences are the same, we obtain

d(y1:7, x
1
1:7) = 4 and d(y1:7, x

2
1:7) = 1.

To diagnose the behaviour of the fitted models in reproducing the second wave and extinction after the second out-

break, we plot the discrepancies d[Tw(x1:T ), Tw(y1:T )] versus d[Te(x1:T ), Te(y1:T )] based on 105 samples x1:T in Fig-

ure S5 and tabulate the proportion of points near (0, 0) in Table S8. Concentrating on these two aspects of the influenza

outbreak on Tristan da Cunha, it is apparent that the Win model fits these two characteristics best: the scatterplot is densely

centred on (0, 0). The scatterplot of the AoN model is also centred on (0, 0) but less so. The 2Vi model is as dense as the

AoN model near (0, 0) but shows considerable scatter; 39% of the points are outside the plot. These outliers correspond to

predicted epidemics that fade out before the second epidemic wave. Similarly, the scatterplot for the Mut and PPI model

reveals that the dynamics of these fitted models differ significantly from the observed second wave. Regarding the InH

model, although all the 105 points are inside the plot, the density is very low near (0, 0) which confirms that this model is

unable to closely reproduce the time series.
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Figure S5: Dotplot of the discrepancies d[Tw(x1:T ), Tw(y1:T )] and d[Te(x1:T ), Te(y1:T )] for 105 replications of x1:T for
each of the six candidate models. The range of the discrepancies has been constrained to improve visualization; points
outside plot are 2Vi : 39%, Mut : 65%, PPI : 40%. In order to compare the density of points across all models we have
divided the plane in a grid of 0.25 by 0.25 and we have plotted each point with colour corresponding to the density of
points within its 0.25×0.25 square (density are expressed as a fraction of the 105 points). The colour legend is represented
on the right of each plot in a log-scale. The colour scale is the same for each plot but for ease of comparison between
models we have limited each legend scale to the maximum of the corresponding plot (for example the density of points
for the InH model is always below 3.65% of pts per square)

Table S8: Proportion of the 105 points within a radius R from (0, 0).

Model R = 0.25 R = 0.5 R = 1 R = 2

Win 0.26 0.5 0.7 0.81
AoN 0.12 0.26 0.43 0.60
2Vi 0.14 0.31 0.42 0.50
Mut 0.06 0.14 0.20 0.24
InH 0.02 0.14 0.40 0.65
PPI 0.01 0.05 0.11 0.18

The AICc differences correspond to diagnosable differences in model behaviour during the second wave and the

extinction period. Aspects of this diagnostic plot can also be cast into the form of classical p-values [15]. For example,

we can consider the one-sided p-values

Prob
(
d[Tw(x1:T ), Tw(y1:T )] > 0 ∧ d[Te(x1:T ), Te(y1:T )] < 0

∣∣∣ θML, Hi

)
,
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which are Win: 0.112, AoN : 0.05, 2Vi : 0.12, Mut : 0.05, InH : 0.01, PPI : 0.01. The large one-sided p-value for model

2Vi can be explained by a substantial number of secondary outbreaks due to the competing virus that are too large in the

absence of cross-immunity. Alternatively, we can also consider a two-sided p-value

Prob
(
d[Tw(x1:T ), Tw(y1:T )]× d[Te(x1:T ), Te(y1:T )] /∈ HD

∣∣∣ θML, Hi

)
.

To facilitate model comparison, we will use the same high density interval HD across all models. We choose to calibrate

HD such that the two-sided p-value of the Win model is 0.2, in which case HD = [−2.56, 2, 42] × [−2.7, 2.11]. Then,

the two-sided p-values (and the increase relative to the Win p-value) are AoN : 0.37 (1.84), 2Vi : 0.50 (2.48), Mut : 0.74

(3.72), InH : 0.30 (1.52), PPI : 0.79 (3.97). That is, the probability that a time series replicate under the fitted models

AoN, 2Vi, Mut, InH, PPI differs from the observed second wave and extinction period by more than the HD bounds

increases by at least 1.5-fold relative to the fitted Win model. Here, we turned attention away from the historic details

of the influenza outbreak on Tristan da Cunha that are captured very well in a likelihood-based model comparison, and

turned our focus towards the characteristic features of this outbreak. This analysis supports the view that the Win model

explains the observed time series best. Moreover it also confirms that the AoN model is significantly the second best

model. Indeed, among the remaining five models, the AoN model is the only one with uncorrelated residuals and it has

the best trade-off between i) a high probability of occurrence for the second epidemic wave; and ii) a good accuracy in

the reproduction of this second epidemic wave.

5 Text S5: Detailed analysis of the extinction probability

In stochastic models, during the early phase of an epidemic, when the number of infected hosts is small, the chain of

disease transmission can be broken and the epidemic goes extinct before a significant proportion of the population has

been infected. In our simple models, individuals remain infectious during a period that follows an Erlang distribution with

shape k = 2. For this class of stochastic models, the probability that a disease fails to invade a population (also called the

probability of minor outbreak) has an analytical approximation based on birth/death process theory. Indeed, the early stage

of an outbreak can be approximated by a process in which individuals live for a random time (e.g. the infectious period),

during which time each individual gives birth (e.g. transmits the disease) according to a Poisson process of constant rate

β. Following classical results from the branching process theory [16, 17], one can easily obtain the probability P that

the birth/death process goes extinct in a finite number of generations (the epidemic dies out quickly). P has the form qI0

where I0 is the initial number of infected individuals (see Table S12) and q is the unique root in [0, 1[ of the equation

s = f(s), with:

f(s) =

∫ ∞
0

e−βt(1−s)gI(t)dt for |s| ≤ 1

where gI is the probability density function of the distribution of the infectious period. For the Erlang distribution with

shape k and mean 1/ν:

gI(t; k, ν) =
(kν)ktk−1e−kνt

(k − 1)!
(1)
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One can easily integrate to obtain:

f(s) =

(
kν

β(1− s) + kν

)k
When k = 2, the cubic equation s = f(s) has only one root q in [0, 1[:

q =
1

2

(
1 +

4

R0
−
√

1 +
8

R0

)

so that the probability that the epidemic dies out before a major outbreak is given by:

P =

[
1

2

(
1 +

4

R0
−
√

1 +
8

R0

)]I0
with R0 =

β

ν
(2)

This analytical formula can be compared to the results of Figure 3F obtained by stochastic simulations. For all six

models we defined the extinction probability before the first epidemic wave (P 1
ext) as the proportion of trajectories (over

105 stochastic realizations) that have faded-out by day 10 after the introduction of the virus. Moreover, for the 2Vi

and Mut models, since the second virus, i.e. the poorly transmissible (2Vi, see Figure S10) or mutated (Mut) virus, is

responsible for the second epidemic wave, we compared the analytical value of P for these viruses to the increase in the

proportion of fade-out trajectories between day 10 and 31 (P 2
ext), i.e. the probability of stochastic extinction before the

second epidemic wave conditioned by occurrence of the first epidemic wave. Note that for the Mut model, since infection

by the first strain confers cross-protection against reinfection by the mutant, we have to slightly modify formula (2). We

replaced I0 by I21 (Tmut), the number of host initially infected by the mutated virus (both values equal to 1 in fact), and

R0 by the Re, the effective reproduction number of the mutant:

Re = R0
S(Tmut) + σL1(Tmut)

N

where S(Tmut) and L1(Tmut) are the number of susceptible and cross-immunized hosts at the emergence time of the

mutant (Tmut = 12), σ = 0.18 is the reducing factor of susceptibility for the cross-immunized hosts and N = 284

is the population size. We computed the mean values Ŝ(Tmut) = 10.46 and L̂1(Tmut) = 237.69 over 105 stochastic

realizations and we obtained Re = 1.72.

Results are presented in Table S9 and show a very good agreement between the analytical formula (2) and the simula-

tions regarding the value of the extinction probability before the first epidemic wave (P 1
ext). Despite a single infected host

at the beginning of the outbreak, these probabilities are lower than 5% because of the high R0 values. In contrast, for the

2Vi and Mut models, the analytical approximation of the early extinction probability of the second virus is respectively

5.9 and 1.3 lower than the probability observed in the simulations. We suggest that this discrepancy is mainly attributable

to the competition, due to ecological interference, between the 2 viruses during the first epidemic wave (2Vi model) or

at the emergence time of the new variant (Mut model). Interestingly, despite having a high estimated number of initially

infectious individuals (Table S12), the low transmissible virus keeps a high extinction probability during the first epidemic

wave due to competition with the high transmissible virus.
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Table S9: Comparison between the analytical approximation (2) and the empirical values (over 105 realizations) of the
extinction probabilities before the first and second (2Vi and Mut models only) waves. The analytical probability * was
computed as P (1stvirus) × P (2ndvirus): the probability that both viruses go extinct before the first epidemic wave.
The analytical probability ** was computed by replacing R0 by Re = 1.72

2Vi Mut AoN PPI InH Win

Days 0→ 10 10→ 31 0→ 10 10→ 31 0→ 10 0→ 10 0→ 10 0→ 10

P 1,2
ext (stochastic realizations) 9.1× 10−4 3.6× 10−1 3.5× 10−2 6.2× 10−1 2.5× 10−2 5.5× 10−2 5.4× 10−3 2.9× 10−2

P (analytical formula) 9.5× 10−4 * 6.1× 10−2 3.4× 10−2 4.7× 10−1 ** 2.4× 10−2 5.5× 10−2 5.4× 10−3 2.7× 10−2

6 Text S6: Sensitivity analysis for the Mut model

Fig. 3 and Text S5 reveal that in the Mut model the newly emerging variant has a high probability to go extinct before

initiating the second epidemic wave and that this early extinction probability is partly attributable to the single host

initially infected with the new variant. Indeed, because second attacks occurred only three weeks after the beginning of

the epidemic in a population of 284 individuals, we reasonably assume that if a new variant emerged during the first wave

it had to happen within a single infected host. This assumption can be justified ad hoc since the estimated amount of

antigenic escape, that is required to initiate the second epidemic wave, was similar to that of antigenic cluster transitions

(σ ≈ 20%) [18, 19]. Here, we show that even allowing for more than one mutation with large antigenic effects, the Mut

model remains far behind the two best models in the ability to explain the two-wave observed epidemic.

We performed a sensitivity analysis of the parameter estimates, the extinction probability and the AICc value, when

the number of newly emerging variants increase. Moreover, in order to test the robustness of our argument we optimize the

chance for a second wave to occur by assuming that the same new variant simultaneously emerged withinM hosts infected

by the mother strain. Results of the maximum likelihood inference are presented in Table S10 and show that parameters

are weakly sensitive toM . In particular, the amount of antigenic escape remains high and on the order of 15%. Regarding

the maximized log-likelihood, estimated values increase slightly with M thanks to the reduced extinction probability of

the emerging variant (Fig S6). However, we note that the probability of inter-wave extinction remains high (> 25%) even

for M = 3 compared with that of the two best models (≈ 5%). Finally, the still high ∆AICc values (> 6) indicate that

none of theses Mut models can be retained has a likely alternative explanation to the best model.
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Table S10: Comparison of the maximum likelihood parameter estimates and ∆AICc values for the Mut model assuming
that M hosts are initially infected with the new variant at t = Tmut

Parameter Description M = 1 M = 2 M = 3

R0 = β/ν basic reproduction number 9.16 11.19 11.37
1/ε mean latent period (days) 2.38 2.40 2.34
1/ν mean infective period (days) 1.01 1.35 1.57
1/γ mean temporary removed period (days) 1.07 2.20 2.16
1− σ cross-immunity between the two strains 0.82 0.85 0.85
ρ reporting rate for observation 0.69 0.68 0.68
Tmut emergence time of the new variant 8/24 8/24 8/23

L(θML) maximized log-likelihood -115.24 -114.60 114.26
AICc corrected Akaike information criterion 255.06 253.78 253.10
∆AICc ∆AICc,i = AICc,i − AICc,Win 8.41 7.13 6.45
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Figure S6: Evolution of the extinction probability of the Mut model for different values of M . Extinction probability is
defined at each point of time as the proportion of faded-out trajectories (E(t) = I(t) = 0) over 104 stochastic realizations

7 Text S7: Dynamics of the Win and AoN models in large populations

The ecological and epidemiological contexts of the 1971 epidemic on the island of Tristan da Cunha differ in several

points from that normally observed in large and uninsulated populations. Indeed, realistic propagation models for these

populations incorporate additional mechanisms such as seasonal forcing (i.e. school closure and climate forcing), external

reintroduction (i.e. immigration), pre-existing immunity (i.e. past influenza incidents) or age-structure (i.e. heterogeneous

mixing). However, in order i) to focus on the direct effects of our reinfection assumptions on the epidemic dynamics in

large population and ii) to compare this dynamics with that observed in Tristan da Cunha, we chose to keep the same

AoN and Win models as in the main paper with their maximum likelihood parameter estimates, allowing for only two

modifications:
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1. we used a population of 1 million individuals with 10 infectious at the beginning of the epidemic (in order to limit

early stochastic extinctions), the remaining individuals being susceptible.

2. since in a large population the close-contact rate, and thus R0, is much lower than among the islanders, we fixed

R0 = 1.4 in accordance with estimates for the 2009/A/H1N1 pandemic [20]

Moreover, since the Win and AoN models presented on the Figure 2 do not distinguish between first and second infections,

we used “unfolded” versions of these two models. Obviously, from a mathematical point of view these “unfolded” models

are equivalent to the original ones. We ran 1000 stochastic realizations of these two models and we computed the evolution

of the mean total incidence, without observation measurement error, as well as the mean incidence due to reinfections

(see Figure S7). By comparing the resulting epidemiological dynamics with that of Tristan da Cunha, we note that:

• for large population sizes and more classical R0 values, the reinfection wave is absorbed in the first and single

epidemic wave. We believe that this remains true whenever the time-scale of the temporary removed period (∼week)

is small compared to the time-scale of the epidemic duration (∼month). As expected, the best period to observe

reinfection cases is just after the epidemic peak because exposure is high and many hosts have already been infected

once. Interestingly, this period can be sufficiently distant from the beginning of the epidemic to distinguish between

the AoN and Win mechanisms by comparing the time elapsed between first and second infections: durations greater

than 4-6 weeks should advocate for the AoN hypothesis. We suggest that experimental studies should focus on this

period to validate our results.

• because of a reducedR0 value, the proportion of hosts having experienced at least one attack in the large population

is reduced by half compared to the Tristan population (63.8% vs 95.4% for the AoN model and 55.4% vs 95.1%

for the Win model). However, the proportion of hosts having experienced two attacks is 4 (AoN ) to 13 (Win) times

less than in the island. This apparent protection against reinfection, in the large population, can be explained by

the lower R0 value and because most reinfections occurs during the downturn of the epidemic when the force of

infection decreases.

• while both AoN and Win mechanisms lead to similar reinfection rates in Tristan da Cunha (42.6% and 39.4%

respectively), simulations in large populations indicate that reinfections occur three times less with the Win mech-

anism (2.4%) than with the AoN mechanism (9.1%). This result suggests that reinfection should be rarer and thus

more difficult to detect in practice with the Win mechanism.

• the proportion of individuals already infected but not immunized at the end of the epidemic is another impor-

tant epidemiological difference between the AoN and Win mechanisms. While this proportion is nil for the Win

mechanism the AoN dynamics leads to two times more re-susceptible hosts (21.1%) than re-infected hosts (9.1%).

Obviously, these non-immunized hosts form a critical group as they can potentially break the population herd im-

munity and sustain a second epidemic wave if a fitter virus is reintroduced. However, this potential risk mainly

depends on the value of the parameter α (the probability to develop a long-term immunity following infection)

which could be exceptionally low among the Tristan da Cunha islanders due to their high susceptibility and/or their

genetic background (see the immunological discussion of the main paper).
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We stress that our immunological assumptions on reinfection must be empirically validated before investigating their

epidemiological consequences on larger populations. Moreover, there is no doubt that the additional epidemiological

mechanisms mentioned above, such like seasonal forcing, would be required to make quantitative predictions on a large

time scale. However, we suggest that these qualitative preliminary results can nonetheless give some insights into the

dynamics of the All-or-Nothing and Window-of-Reinfection mechanisms in larger population/time-scale but also help to

identify the best time during the course of an epidemic to conduct experimental verifications.
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Figure S7: Dynamics of the AoN and Win model on a large population (A and C, weekly incidence) and comparison
with the dynamics in Tristan da Cunha (B and D, daily incidence). We computed the evolution of the mean total incidence
(infection plus reinfection, in red) over 103 realizations and we plotted the cases due to reinfection (in blue). Attack rates
and proportions are expressed in percentage of the total population. A and C: the population represents 106 individuals
with initially 10 infectious. TheR0 value is fixed to 1.4, and other parameters are those estimated by maximum likelihood
(see Figure 4 in the main paper).

8 Text S8: Practical non-identifiability for the InH model

The ML estimates of R0 and the infectious period (1/ν) are about twice higher under the InH model compared to other

models. In particular, as shown in Table S11, the corresponding 95% confidence intervals (CI) for these two parameters

is widely extended in the InH model, resulting in a practical non-identifiability issue [3]. This CI is computed via log-

likelihood profiles which appears very flat. To investigate further the origin of the problem we used the results of the

likelihood profile of R0, as explained in reference [3]. Results are presented in Figure S8. As shown in Figure S8A, this

profile is flat and the CI is thus widely extended. For each fixed value of R0, the profile gives the maximum likelihood
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estimates of the remaining parameters. As shown in Figure S8B, there is a strong positive correlation between R0 and the

duration of the infectious period (1/ν). By fitting a linear regression over this correlation we found that the transmission

coefficient of the virus (β = R0ν) remains approximately constant over the 95% CI and equal to 3.88 effective contacts

per days. Accordingly, the evolution of the mean incidence is indistinguishable for all R0 values included in the 95% CI

(Figure S8C). In contrast, the evolution of the mean prevalence presents significant differences after the epidemic peak

(Figure S8D) because hosts remain infected longer when 1/ν increases. Together, these results indicate that for the InH

model i) the observed incidence time series can be reproduced over a large range of R0 values leading to a practical

non-identifiability of this parameter; ii) R0 is positively correlated with the infective period (1/ν) in order to keep the

transmission coefficient constant (ν is thus also poorly identifiable); iii) information on the prevalence after the epidemic

peak (around day 15) would be valuable to fix this non-identifiability issue. Unfortunately, there is no data on the evolution

of the prevalence in the original paper by Mantle and Tyrrell [1].

On another hand, one can ask why are R0 and ν less identifiable in the InH model than in the other five models?

Actually, the InH model is the only one where reinfection does not depend on a contact process: following recovery,

unprotected hosts are doomed to suffer from an intra-host reinfection. Put it in another way, β (and thus R0 and ν) is

inferred only during the first epidemic wave, when infections are exclusively due to disease transmission, but not during

the second epidemic wave, when infections only depend on the shape and the timing of the in-host reinfection via the

parameters γ and kR. In contrast, under the five other models, R0 and ν are inferred over the whole incidence time series

which is enough informative to prevent these non-identifiability issues.
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Figure S8: Analysis of the practical non-identifiability of R0 and ν for the InH model. A: profile log-likelihood of R0.
Values in the 95% confidence interval (dashed lines) are colour coded. B: correlation between R0 and 1/ν, for each fixed
value ofR0 we plotted the maximum likelihood estimate for 1/ν obtained by log-likelihood profile computation. We then
fitted a linear regression and found a constant transmission coefficient (β = R0ν u 3.88 effective contacts per day) over
the 95% confidence interval R0 ∈ [12, 50]. C: for each value of R0 we computed the evolution of the mean incidence.
Curves are plotted with colour corresponding to the R0 value and cannot be distinguished. D: as in C but for the evolution
of the mean prevalence.
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9 Text S9: Calculation and comparison of the effective reproduction ratio

Our maximum likelihood estimates of the basic reproduction number R0 = β/ν are unusually high for influenza (around

10 under our two best models). We defineR′e(t) as the effective reproduction number predicted by our mechanistic models

at time t:

R′e(t) = R0 × Ŝt/N (3)

where N = 284 is the population size and Ŝt is the number of individuals susceptible to be infected or reinfected at time

t. We note that the expression of Ŝt depends on the reinfection hypotheses. Using the notations of Figure 2 (main text)

we have Ŝt = S(t) for the AoN and InH models, Ŝt = S(t) + W (t) for the Win model, Ŝt = S(t) + σL(t) for the

PPI model, Ŝit = S(t) + Lj(t) for strain i in 2Vi model and Ŝit = S(t) + σLj(t) for strain i in Mut model. Note that

our estimates of the initial conditions (Table S12) together with the reported high attack rate (96%) indicate that at the

beginning of the epidemic we have R′e(0) ≈ R0.

Interestingly, since the dataset reports daily incidence counts, it is possible to reconstruct the time course of the

effective reproduction number (Re) using the algorithm described in reference [21] and thus to compare and test our

results.

The method proposed by Wallinga and Teunis [21] is a likelihood-based estimation procedure that infers “who infected

whom” from the observed dates of symptom onset as provided by the epidemic curve. The key assumption that allows the

authors to write down a likelihood function requires the independence between transmission events from case j to case i

and from case j to any other case k. Assuming this pair approximation, their algorithm takes as inputs the incidence time

series and the distribution of the generation time (τ ) which is the time from symptom onset in a primary case to symptom

onset in a secondary case. Given these two inputs the likelihood that case i as been infected by case j is:

pij =
f(ti − tj)∑
i 6=k f(ti − tk)

(4)

where ti and tj are the dates of symptom onsets and f is the probability density function of the generation time (note that

f(τ) = 0 for τ < 0 so that if pij=0 if ti < tj). The effective reproduction number for case j is then:

Rj =
∑
i

pij (5)

and the average daily reproduction number Re(t) is calculated as the arithmetic mean over Rj for all of those cases j

who reported symptoms of illness on day t. We refer to the original paper of Wallinga and Teunis [21] for a step by step

derivation of equations (4) and (5).

In order to compare Re(t) with R′e(t) for each model, we must derive the analytical expression for the probability

density function of the generation time associated with our mechanistic models. Its general form is equal to the following

convolution [22]:

f(τ) = gE ∗ h(τ)

=

∫ τ

0

gE(t)h(τ − t)dt
(6)
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where

h(t) =

∫ ∞
t

gI(s)

s
ds

and gE (resp. gI ) is the probability density function of the latent (resp. infectious) period. In this study, we have assumed

that these periods follow an Erlang distribution with shape equal to 2 and we have estimated the mean latent (1/ε) and

infectious (1/ν) periods for each model. Using the general formula (1) given in the Text S5 for the probability density

function of the Erlang distribution, we obtain gE(t) = (2ε)2te−2εt and h(t) = 2νte−2νt for t ∈ [0,∞). Replacing in

equation (6) we obtain for τ ∈ [0,∞) (provided that ε 6= ν):

f(τ) =
4ε2ν

(ν − ε)

[
te−2εt +

1

2(ν − ε)
(e−2νt − e−2εt)

]
(7)

For each model, we computed the time course ofRe by replacing ν and ε in equation (7) by their maximum likelihood

estimates (reported in Table S11). We also computed R′e using equation (3) and taking the mean value of Ŝt over 105

simulations, conditioning on the occurrence of the second epidemic wave. Comparison is presented in Figure S9 from

which we can draw the following conclusions:

1. Re is found to be high (around 8) at the beginning of the epidemic which is consistent with R′e (around 10) and

gives support to a high R0 value during the 1971 influenza epidemic in TdC. In agreement with the discussion

in [21], we note that the observed discrepancy with R′e is likely to result from the fact that Wallinga and Teunis’

algorithm ignores under-reporting in the data counts (around 15%). By contrast, our maximum likelihood approach

accounts for under-reporting.

2. The fluctuations in Re throughout the epidemic (black dots) are fairly well reproduced by our mechanistic models

(red and blue curves) and in particular by our two best models (Win and AoN). Small fluctuations of R′e are not

captured graphically (those are averaged values over 105 simulated time series) but occur in individual simulations

due to stochasticity.

3. Since our mechanistic approach assumes a constant transmission rate, this analysis shows that variations in the

number of susceptibles can fairly well reproduce and explain the observed fluctuations in Re when the possibility

of reinfections is explicitly included into epidemiological models. Indeed, we argue that in this small community

(N=284) with a high attack rate (96%), variation in Re is expected to depend crucially on the available number of

susceptibles. This is especially true during the second epidemic wave when fluctuations in Re above 1 strongly

depend on the rate at which hosts become available for reinfection. We note that fluctuations in the transmission

rate could also have played a role in the variation of Re. For instance, the initial welcome gatherings might have

played a role in accelerating the initial growth rate of the epidemic. Although this question could be addressed by

assuming a separate transmission rate at the beginning of the epidemic, it would have no impact on model selection

because the differences in log-likelihoods (and thus in AIC) between our six models accumulate during the second

epidemic wave rather than at the beginning of the first wave. Indeed, all six models behave similarly during the first

wave (see Figure 3 A–E in the main text).
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Figure S9: Comparison between Re and R′e throughout the epidemic. Note that for the InH model R′e does not increase
during the second epidemic wave because reinfection occurs within hosts.
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10 Table S11: 95% confidence intervals for parameter estimates

Table S11: Parameters description, parameters bounds used for the procedure described in Step 1 of Text S2, maximum
likelihood estimate (MLE), Monte Carlo standard deviation of this estimate (σMC) for parameters and approximate 95%
confidence intervals computed via log-likelihood profile. See Text 2 for computational details. Values with * indicate that
the end of the confidence interval is beyond the parameter bound.

Parameter Description Bounds MLE σMC 95% CI

Window-of-reinfection (Win)
R0 = β/ν basic reproduction number [1, 50] 10.53 < 10−2 6.14 – 17.06
1/ε mean latent period (days) [0.1, 7] 2.16 < 10−2 0.45 – 2.65
1/ν mean infective period (days) [0.1, 11] 2.01 < 10−2 0.1* – 4.20
1/γ mean temporary resistance period (days) [0.1, 30] 13.61 0.02 11.04 – 20.78
1/τ mean duration of the reinfection window (days) [0.1, 20] 4.80 0.01 2.67 – 15.01
ρ reporting rate for observation [0, 2] 0.71 < 10−2 0.59 – 0.79

All-or-Nothing (AoN )
R0 = β/ν basic reproduction number [1, 50] 11.20 0.03 5.50 – 19.91
1/ε mean latent period (days) [0.1, 7] 2.07 < 10−2 0.65 – 2.78
1/ν mean infective period (days) [0.1, 11] 2.44 < 10−2 0.1* – 4.49
1/γ mean temporary resistance period (days) [0.1, 30] 11.57 0.02 7.60 – 17.05
α probability to develop long-term immunity [0, 1] 0.53 < 10−2 0.37 – 0.60
ρ reporting rate for observation [0, 2] 0.71 < 10−2 0.59 – 0.80

2 Virus initially introduced (2Vi )
R1

0 = β1/ν basic reproduction number (1st virus) [1, 50] 1.96 < 10−2 1.50–2.73
R2

0 = β2/ν basic reproduction number (2nd virus) [1, 50] 14.24 0.02 6.24–23.78
1/ε mean latent period (days) [0.1, 7] 2.18 < 10−2 1.23 – 2.98
1/ν mean infective period (days) [0.1, 11] 2.32 < 10−2 0.1* – 4.34
1/γ mean temporary removed period (days) [0.1, 30] 0.64 0.01 0.1*– 3.62
ρ reporting rate for observation [0, 2] 0.65 < 10−2 0.56 – 0.76

Mutation (Mut)
R0 = β/ν basic reproduction number [1, 50] 9.16 0.02 5.05 – 16.39
1/ε mean latent period (days) [0.1, 7] 2.38 < 10−2 0.1* – 3.00
1/ν mean infective period (days) [0.1, 11] 1.01 < 10−2 0.12 – 2.86
1/γ mean temporary removed period (days) [0.1, 30] 1.07 0.02 0.1* – 5.61
1− σ cross-immunity between the two strains [0, 1] 0.82 < 10−2 0.64 – 0.90
ρ reporting rate for observation [0, 2] 0.69 < 10−2 0.59 – 0.79
Tmut emergence time of the new variant [8/21, 9/8] 8/24 – 8/21* – 8/27

Intra-Host recrudescence of infection (InH )
R0 = β/ν basic reproduction number [1, 50] 25.43 0.08 12.62 – 50*
1/ε mean latent period (days) [0.1, 7] 2.45 < 10−2 1.21 – 2.66
1/ν mean infective period (days) [0.1, 11] 4.97 0.01 2.68 – 11*
1/γ mean time before in-host reinfection (days) [0.1, 30] 15.90 0.02 10.13 – 20.12
α probability to develop long-term immunity [0, 1] 0.62 < 10−2 0.52 – 0.68
ρ reporting rate for observation [0, 2] 0.75 < 10−2 0.63 – 0.84

Partially-Protective-Immunity (PPI )
R0 = β/ν basic reproduction number [1, 50] 6.92 0.02 3.99 – 15.12
1/ε mean latent period (days) [0.1, 7] 1.84 < 10−2 0.1* – 2.55
1/ν mean infective period (days) [0.1, 11] 1.04 < 10−2 0.1* – 3.30
1/γ mean temporary resistance period (days) [0.1, 30] 5.72 0.01 2.74 – 9.38
1− σ partial protection induced by immunity [0, 1] 0.83 < 10−2 0.67 – 0.92
ρ reporting rate for observation [0, 2] 0.68 < 10−2 0.55 – 0.75
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11 Table S12: Initial conditions

Table S12: Initial conditions were also inferred via the MIF algorithm as explained in reference [9]. We divided the initial
population (N = 284) into three classes: S, I andL. Individuals in theL class are supposed to be either totally immunized
against the virus or not available during the time-course of the epidemic. We inferred S(0), I(0) independently and we
fixed L(0) = N −S(0)− I(0). The upper bound for I(0) corresponds to the initial number of passengers landed on TdC.
*For the 2Vi model we inferred the initial number of infected individuals for both viruses (low/high transmissible virus).

Model S(0) I(0) L(0)

Bounds [0, 284] [0, 5] –

2Vi 277 3/1* 3
Mut 278 1 5
AoN 277 1 6
PPI 277 1 6
Win 277 1 6
InH 276 1 7

12 Figure S10: Dynamics of the 2Vi model
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Figure S10: Evolution of the prevalence for the highly (resp. poorly) transmissible virus is plotted in black (resp. in red)
for one typical realization of the 2Vi model with maximum likelihood parameter estimates of Figure 4 (see main paper).
The first epidemic wave is mainly due to the highly transmissible virus (R2

0 = 14.24) while the second epidemic wave
is exclusively due to the poorly transmissible virus (R1

0 = 1.96). Because of the competition between the two viruses
during the first epidemic wave, the poorly transmissible virus is just able to maintain a low prevalence, resulting in a 35%
of chance of going extinct before initiating the second epidemic wave (see Figure 3 in the main paper).
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13 Figure S11: Dynamics of the AoN with Mathews’ parameter estimates
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Figure S11: Effect of incorporating demographic stochasticity on parameter inference. We compare the evolution of
the extinction probability of the stochastic AoN model when it is ran i) with the ML parameter estimates obtained via
MIF and presented in Figure 4 of the main paper, ii) with the parameter set obtained by Mathews et al. [23] with a
similar but deterministic model and using MCMC. Since our modelling approach takes demographic stochasticity into
account, the maximum likelihood procedure implicitly try to minimize the inter-wave extinction probability. In contrast,
the deterministic model of Mathews et al. [23] is insensitive to such stochastic extinctions and leads to parameter estimates
that are far from being optimal regarding the chance for a second epidemic wave to occur. Parameter set of Mathews et
al.: R0 = 6.44, 1/ε = 1.36 days, 1/ν = 0.98 days, 1/γ = 12 days and α = 0.49 with initial conditions: S(0) = 239,
I(0) = 2 and R(0) = 45 individuals.
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