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Hypotheses (biological, physical, etc)
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Time series analysis

Mechanistic
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Parameter inference:

|dentifiability, maximum likelihood
estimates, confidence intervals
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Model selection:

objective ranking of models,
which hypothesis best explains the data?
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Tristan da Cunha (1971)
a two-wave flu epidemic
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Tristan da Cunha (1971)
a two-wave flu epidemic
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A simple mechanistic
approach

* A= B I/N mass-action

*//€ : mean latent period
*//v : mean infectious period
*//y : mean removed period
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Long-term
Immunity




H1:the virus mutated during
the first epidemic-wave (Mut)




H1:the virus mutated during
the first epidemic-wave (Mut)




H1:the virus mutated during
the first epidemic-wave (Mut)




H?2: intra-host recrudescence
of infection (InH)




H3: window-of-reinfection
(Win)
A

| /T: the mean duration of the window of
susceptibility before developing immunity




Likelihood-based inference

For a given time series: y1.7 = (y1, Y2, -, YT)
and a state space model completely specified by:

f(x¢|xr_1,0) the conditional transition density
f(y¢|xe,0) the conditional distribution
of the observation process
f(zg|@) the initial density

the likelihood is given by the identity:

T

fyrr|0) = || fvelyriea,0)

t=1

where x; is the unobserved Markov process, 6 is the unknown vector
of parameters and f(.|.) is a generic density specified by its arguments




Exploring the likelihood surface




Exploring the likelihood surface
with MIF (lonides et al. 2006)
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Exploring the likelihood surface
with MIF (lonides et al. 2006)




Log-likelihood profile

projection
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95% confidence interval:

: 2[l(p)(é2) — () (02)] < Xp.05(1)}

with ég — arglnax l(p) (@2)




Parameter identifiability




Structural non-identifiability
(Mutation: H1)




Practical non-identifiability
(In-Host: H2)
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linear regression:
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Likelihood-based inference

For a given time series: y1.7 = (y1, Y2, -, Y7)
and a state space model completely specified by:

f(x¢|xr—1,0) the conditional transition density
f(y¢|xs,0) the conditional distribution
of the observation process
f(zg|@) the initial density

the Log-likelihood is given by the identity:

log(f(y1.710)) Zlog (yelyr:-1,0))

where x; is the unobserved Markov process, 6 is the unknown vector
of parameters and f(.|.) is a generic density specified by its arguments




Model selection: Akaike
information criterion
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Dynamics comparison
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Dynamics comparison
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Conclusion

Maximum likelihood via Iterated Filtering (MIF, lonides et
al. 2006) is a rigorous statistical framework for parameter
inference and selection based on AIC for mechanistic
stochastic models.

|dentifiability analysis and 95% Cl via log-likelihood profile

lllustrate and compare the dynamics of the different
models in a visual and intuitive manner
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Likelihood-based inference

For a given time series: y1.7 = (y1, Y2, -, Y7)
and a state space model completely specified by:

f(x¢|xr—1,0) the conditional transition density
f(y¢|xs,0) the conditional distribution
of the observation process
f(zg|@) the initial density

the Log-likelihood is given by the identity:

log(f(y1.710)) Zlog (yelyr:-1,0))

where x; is the unobserved Markov process, 6 is the unknown vector
of parameters and f(.|.) is a generic density specified by its arguments




Maximum likelihood via lterated
Filtering (lonides et al. 2006)

As shown by Ionides et al. (2006), under rather mild assumptions,

T A A
¥ 0y — 01
11m

o—0 V
t=1 t

= Vlog f(y1.7|0,0 = 0)

so that, for a sufficiently small o,,, the algorithm iteratively updates 9(™) in the
direction of increasing likelihood, with a fixed point at a local maximum of the
likelihood surtace.




