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Parameter inference:
Identifiability, maximum likelihood 

estimates, confidence intervals

Model selection:
objective ranking of models,

which hypothesis best explains the data?

Fit
?



Tristan da Cunha (1971)
a two-wave flu epidemic 
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Attack rates:
• Infection : 95%
• Reinfection : 30%

Objectives:
 Disentangling between 6 biological 

mechanisms to explain rapid 
influenza reinfection



A simple mechanistic 
approach

S E I R L
λ ε ν γ

• λ = β I/N mass-action
•1/ε : mean latent period
•1/ν : mean infectious period
•1/γ : mean removed period

Long-term 
immunity



H1: the virus mutated during 
the first epidemic-wave (Mut)
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H1: the virus mutated during 
the first epidemic-wave (Mut)

S E1 I1 R1 L1
λ1 ε ν γ

• σ ∈[0,1] cross-immunity
• 2-strain history-based model (Rios-Doria & Chowell 2009)

L2 R2 I2 E2ενγ

σλ2



S E I R L
λ ε ν αγ

α: the probability to clear the viral load

(1-α)γ

H2: intra-host recrudescence 
of infection (InH)



H3: window-of-reinfection 
(Win)

S E I R L
λ ε ν

γ

1/τ: the mean duration of the window of 
susceptibility before developing immunity

W
λ

τ



Likelihood-based inference

For a given time series: y1:T = (y1, y2, ..., yT )
and a state space model completely specified by:

M :






f(xt|xt−1, θ) the conditional transition density
f(yt|xt, θ) the conditional distribution

of the observation process
f(x0|θ) the initial density

the likelihood is given by the identity:

f(y1:T |θ) =
T∏

t=1

f(yt|y1:t−1, θ)

where xt is the unobserved Markov process, θ is the unknown vector
of parameters and f(.|.) is a generic density specified by its arguments



Exploring the likelihood surface
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Exploring the likelihood surface 
with MIF (Ionides et al. 2006)
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Local trap:
• initial θ
• MIF para-
metrization

Exploring the likelihood surface 
with MIF (Ionides et al. 2006)



Log-likelihood profile
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95% confidence interval:

{θ2 : 2[l(p)(θ̂2)− l(p)(θ2)] < χ2
0.95(1)}

with θ̂2 = argmax l(p)(θ2)



Parameter identifiability

Structural 
non-

identifiability

Practical
 non-

identifiability
Identifiability

Raue et al. 2009



Structural non-identifiability 
(Mutation: H1)

S E1 I1 R1 L1
λ1 ε ν γ

L2 R2 I2 E2ενγ

Structural non-identifiability between σ and β2 ⇒ β2 = β1 

σβ2 I2/N



Practical non-identifiability 
(In-Host: H2)
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Likelihood-based inference

For a given time series: y1:T = (y1, y2, ..., yT )
and a state space model completely specified by:

M :






f(xt|xt−1, θ) the conditional transition density
f(yt|xt, θ) the conditional distribution

of the observation process
f(x0|θ) the initial density

the Log-likelihood is given by the identity:

log(f(y1:T |θ)) =
T∑

t=1

log(f(yt|y1:t−1, θ))

where xt is the unobserved Markov process, θ is the unknown vector
of parameters and f(.|.) is a generic density specified by its arguments



Model selection: Akaike 
information criterion

Model Win Mut In-Host

k 9 10 9

Log-Like -112.52 -115.20 -117.50

ΔAICc 0 8.27 9.96

AICc = −2L(θMLE) + 2k +
2k(k + 1)
T − k − 1

with k = ||θ||



Dynamics comparison
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Conclusion
• Maximum likelihood via Iterated Filtering (MIF, Ionides et 

al. 2006) is a rigorous statistical framework for parameter 
inference and selection based on AIC for mechanistic 
stochastic models.

• Identifiability analysis and 95% CI via log-likelihood profile

• Illustrate and compare the dynamics of the different 
models in a visual and intuitive manner

(1) Ionides EL, Breto CM, King AA. Inference for nonlinear dynamical systems. PNAS. 2006

(2) Raue A, Kreutz C, Maiwald T, et al. Structural and practical identifiability analysis of partially observed 
dynamical models by exploiting the profile likelihood. Bioinformatics (Oxford, England). 2009

(3) Camacho A, Ballesteros S, Graham AL, Carrat F, Cazelles B. Explaining rapid reinfection in multiple-
wave influenza outbreaks? Tristan da Cunha epidemic as a case study. (in preparation)



Likelihood-based inference

For a given time series: y1:T = (y1, y2, ..., yT )
and a state space model completely specified by:

M :






f(xt|xt−1, θ) the conditional transition density
f(yt|xt, θ) the conditional distribution

of the observation process
f(x0|θ) the initial density

the Log-likelihood is given by the identity:

log(f(y1:T |θ)) =
T∑

t=1

log(f(yt|y1:t−1, θ))

where xt is the unobserved Markov process, θ is the unknown vector
of parameters and f(.|.) is a generic density specified by its arguments



Global estimate: θ̂(n) = θ̂(n−1) + V (n)
1

∑T
t=1

θ̂(n)
t −θ̂(n)

t−1

V (n)
t

Maximum likelihood via Iterated 
Filtering (Ionides et al. 2006)

As shown by Ionides et al. (2006), under rather mild assumptions,

lim
σ→0

T∑

t=1

θ̂t − θ̂t−1

Vt
= ∇ log f(y1:T |θ,σ = 0)

so that, for a sufficiently small σn, the algorithm iteratively updates θ̂(n) in the
direction of increasing likelihood, with a fixed point at a local maximum of the
likelihood surface.


