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Abstract

Species spatial turnover, or b-diversity, induces a decay of community similarity with

geographic distance known as the distance–decay relationship. Although this relationship

is central to biodiversity and biogeography, its theoretical underpinnings remain poorly

understood. Here, we develop a general framework to describe how the distance–decay

relationship is influenced by population aggregation and the landscape-scale species-

abundance distribution. We utilize this general framework and data from three tropical

forests to show that rare species have a weak influence on distance–decay curves, and

that overall similarity and rates of decay are primarily influenced by species abundances

and population aggregation respectively. We illustrate the utility of the framework by

deriving an exact analytical expression of the distance–decay relationship when

population aggregation is characterized by the Poisson Cluster Process. Our study

provides a foundation for understanding the distance–decay relationship, and for

predicting and testing patterns of beta-diversity under competing theories in ecology.
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I N T R O D U C T I O N

One of the most widely used relationships in spatial

biodiversity studies is the distance–decay, which describes

how the similarity in species composition between two

communities varies with the geographic distance that

separates them. This relationship received the early interest

of Whittaker in his seminal study of vegetation in the

Siskiyou mountains (Whittaker 1960, 1972) and Preston

when examining the Galapagos flora (Preston 1962). The

distance–decay relationship became increasingly popular

after Nekola & White (1999) formalized its ability to

describe, compare and understand biodiversity patterns.

Considered one of the few �distributions of wealth�
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characterizing communities (Nekola & Brown 2007),

distance–decay curves have now been studied across a wide

range of organisms, geographic gradients and environments

(Nekola & White 1999; Condit et al. 2002; Tuomisto et al.

2003; Green et al. 2004; Novotny et al. 2007; Qian &

Ricklefs 2007; Soininen & Hillebrand 2007).

There are many reasons to explain the success of the

distance–decay relationship in ecology. Data required to plot

the distance–decay curve are readily obtained by sampling at

local scales across a landscape, making large-scale biodiver-

sity studies empirically tractable (Harte et al. 1999; Condit

et al. 2002; Green et al. 2004; Krishnamani et al. 2004).

Because the distance–decay relationship reflects patterns of

spatial distribution and autocorrelation, it is likely sensitive

to key spatial processes such as dispersal limitation, making

it a powerful tool for testing mechanistic ecological theories

(Chave & Leigh 2002; Condit et al. 2002). Even in the

absence of theoretical derivations, distance–decay data can

be used to understand the forces driving community

turnover patterns such as dispersal limitation and environ-

mental heterogeneity (Tuomisto et al. 2003; Ferrier et al.

2007; see Legendre et al. (2005) and Tuomisto & Ruoko-

lainen (2006) for discussion of statistical approaches).

Finally, the recent incorporation of species� evolutionary

history in distance–decay approaches offers a novel per-

spective for investigating the spatial turnover of phylo-

genetic composition across landscapes (Ferrier et al. 2007;

Bryant et al. in press).

Despite a longstanding interest in the distance–decay

relationship, its theoretical foundations remain poorly

understood. The first theoretical derivation of the dis-

tance–decay relationship was based on dimensional anal-

yses and the assumption of fractal species� spatial

distributions (Harte & Kinzig 1997; Harte et al. 1999).

More recent analyses stemming from the neutral theory of

biodiversity provide predictions for the distance–decay

relationship in an environmentally homogeneous land-

scape, under the assumption that species are demo-

graphically identical (Hubbell 2001; Chave & Leigh 2002;

Condit et al. 2002). However, a theoretical framework for

the distance–decay relationship free of assumptions about

the spatial organization of individuals or community

dynamics is still lacking. Such a general framework is

necessary to interpret distance–decay curves observed in

nature, where no particular clustering or assembly pro-

cesses can be assumed a priori.

Sampling theory provides a foundation for understanding

the spatial scaling of diversity with minimal assumptions

(McGill et al. 2007). Sampling theory has been used to derive

scaling relationships for many macroecological patterns

including the species–area and endemics–area relationships

(He & Legendre 2002; Green & Ostling 2003), the species-

abundance distribution (Green & Plotkin 2007) and species

turnover (Plotkin & Muller-Landau 2002). Plotkin & Muller-

Landau (2002) paved the way for integrating the distance–

decay relationship into sampling theory by deriving the

compositional similarity between two samples randomly

drawn from a landscape, independent of their spatial

location. However, the distance–decay relationship requires

understanding how community similarity varies as a

function of the geographic distance separating samples,

and there currently exists no general sampling formula for

this spatial pattern.

In this paper, we merge sampling theory and spatial

statistics to develop a framework for understanding the

distance–decay relationship. We begin by deriving a general

formula for distance–decay as a function of the landscape-

scale species-abundance distribution and intraspecific spa-

tial autocorrelation. This general framework does not

assume a particular type of population clustering or

community dynamics. To illustrate the utility of this

framework, we examine a specific model of clustering: the

Poisson Cluster Process. This spatial-point process was

chosen due to its mathematical tractability (Cressie 1993;

Diggle 2003), its ability to reproduce species–area curves

(Plotkin et al. 2000) and its potential to characterize the

dispersal capacity of species (Seidler & Plotkin 2006). We

compare our theoretical predictions to empirical data from

three tropical forests with distance–decay curves that differ

widely in their compositional similarity values, rate of

decay and functional form. We conclude by discussing the

implication of our results for biodiversity and biogeogra-

phy studies.

G E N E R A L F R A M E W O R K

Our interest lies in the similarity between two sampled

communities separated by a given geographic distance.

We quantify community similarity using the incidence-

based Sørensen index, which measures the number of

species shared between two communities divided by the

average number of species in each community. The

analytical derivations outlined below could be readily

adapted for other measures of similarity based on species

presence ⁄ absence or abundance, but we focus on the

Sørensen index because it is widely used in ecology

(Magurran 2004), has been proposed as a means to

estimate the species–area relationship (Harte & Kinzig

1997) and was adopted in the initial developments of

beta-diversity sampling theory (Plotkin & Muller-Landau

2002).

General sampling formula

Deriving a sampling formula for the distance–decay

relationship requires knowledge about the abundance and
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aggregation of species within a landscape. Biodiversity

sampling theory has traditionally assumed that population

aggregation is invariant across species (He & Legendre 2002;

Plotkin & Muller-Landau 2002; Green & Ostling 2003) or a

linear function of population abundance (Green & Plotkin

2007). For generality, we relax this assumption by introduc-

ing n(n, c), the joint probability that a given species in the

landscape has abundance n and a set of clustering

parameters c (e.g. the parameter k of the negative binomial

distribution, or the parameters q and r of the Poisson

Cluster Process).

Let w(a, n, c) denote the probability that a species with

landscape-scale abundance n and aggregation c is present

in a sample that covers a proportion a of a landscape. Let

w*(a, n, c, d ) denote the probability that a species with

abundance n and aggregation c is present in a situated at

distance d from a focal individual. The expected Sørensen

similarity v(a, d )is:

vða; dÞ ¼
R

wða; n; cÞw�ða; n; c; d Þnðn; cÞdndcR
wða; n; cÞnðn; cÞdndc

: ð1Þ

A summary of symbol notations and the theoretical

underpinnings for eqn 1 can be found in Appendices SA

and SB of the Supporting Information. The occurrence

probability w(a, n, c) is commonly used to quantify

macroecological patterns such as species range size distri-

butions and species richness in a sampling area (Gaston &

Blackburn 2000). The probability w*(a, n, c, d ), which we

refer to as the �neighbourhood occurrence probability�, is

novel but closely related to the classical relative neighbour-

hood density W(d ) (Fig. 1). W(d ) is defined as the expected

density of individuals in an annulus of radius d and thickness

Dd centred on a focal individual, normalized by the density

of individuals in the landscape (Condit et al. 2000; Ostling

et al. 2000; Wiegand & Moloney 2004). W(d ) is also known

as the pair correlation function in spatial statistics, and is

interchangeable with other correlation metrics (Appendix

SB).

In Appendix SB, we derive the distance–decay relation-

ship in terms of the correlation metric W(d ):

vða; dÞ ¼
R

wðan; cÞwðanXðc; dÞ; cÞnðn; cÞdndcR
wðan; cÞnðn; cÞdndc

: ð2Þ

Equation 2 provides the analytical link between abundance,

clustering, sample area and the decay of community

similarity with distance. Although the derivation of eqns 1

and 2 require the assumption that sampling areas are

relatively small compared with the geographic distance

separating them (for discussion see Appendix SB), we

demonstrate in Empirical Evaluation that these equations

provide an accurate approximation over a wide range of

spatial scales.

Qualitative predictions

The general sampling formula above (eqn 2) leads to a

suite of qualitative predictions that do not require

assuming a specific form for the occurrence probability,

spatial autocorrelation function, or landscape-scale species

abundance distribution. Equation 2 does not involve the

total number of species in the landscape, suggesting that

the distance–decay relationship is insensitive to species

richness. Equation 2 does not involve spatial correlations

between species, suggesting that shuffling species in space

would not affect the distance–decay relationship. Interspe-

cific aggregation may thus only influence distance–decay

curves indirectly through its influence on species� abun-

dances and intraspecific aggregation. Finally, the contribu-

tion of species to the integrals in eqn 2 is weighted by their

landscape-scale abundance, suggesting that similarity at any

distance is primarily determined by the most abundant

species in a landscape and relatively insensitive to the rare

ones.

Figure 2 illustrates qualitative predictions related to the

influence of abundance, clustering and sample area on the

distance–decay relationship. In a hypothetical landscape

with even abundances and aggregation, the distance–decay

formula suggests that the functional form of the relation-

ship is primarily determined by species� aggregation as

measured by the decay of W with distance, while

landscape-scale species abundances and sample area

primarily influence overall similarity (Appendix SB). In

biologically realistic landscapes where species differ in their

abundance and aggregation, the correlation between these

two variables will substantially influence the predictions

above. More generally, the aggregation–abundance rela-

tionship is expected to play a major role in shaping

distance–decay curves. The relative contribution of rare

species to the rate of decay is expected to be more

important if rare species are highly aggregated, and steep

decays should occur in landscapes where the dominant

species are highly aggregated.

In Empirical Evaluation, we test these qualitative predic-

tions in tropical forests. We now give an example of how

the framework presented above can be used to derive the

distance–decay relationship when a specific type of popu-

lation aggregation is assumed.

A P P L I C A T I O N : P O I S S O N C L U S T E R P R O C E S S

Spatial statistics have received growing interest among

ecologists with the acquisition of spatially explicit data,

including the establishment of large tropical forest plots

around the globe ( John et al. 2007; Wiegand et al. 2007).

Spatial point processes provide powerful tools for charac-

terizing aggregation. The homogeneous Poisson Cluster
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Figure 1 Example of (a) the relative neighbourhood density W and (b) the neighbourhood occurrence probability curves w* for (c) four

tropical forest species in Korup National Park, Cameroon. W and w* are tightly linked: when a species is aggregated (i.e. Crotonogyne strigosa,

Rinorea thomasii), both the relative neighbourhood density W and the neighbourhood occurrence probability w* are decreasing functions of

distance. When a species is uniformly distributed (i.e. Diospyros gabunensis, Mareyopsis longifolia), neither W nor w* depend on distance.

Aggregation mainly influences the shape of w*, and abundance its overall value. Here, w* is calculated in a 20 · 20 m quadrat nested in the

50-ha plot (a = 0.0008).
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Process is one of the simplest, and is described in detail

elsewhere (Cressie 1993; Plotkin et al. 2000; Diggle 2003). In

short, individuals of a species are assumed to be clumped in

clusters according to the following rules:

(1) Cluster centres are randomly distributed in the land-

scape X according to a Poisson process with constant

density q.

(2) Each cluster is assigned a random number of individ-

uals, drawn independently from a Poisson distribution

with intensity l.

(3) The position of the individuals relative to the centre of

their clusters is drawn independently from a radially

symmetric Gaussian distribution h with variance r2,

namely

hðx; yÞ ¼ 1

2pr2
expð� x2 þ y2

2r2
Þ: ð3Þ

Intuitively, q reflects the density of clusters, r their spatial

extent and l the number of individuals per cluster. A

landscape where the homogeneous Poisson Cluster Process

characterizes population aggregation consists of an inde-

pendent superposition of individual species, so that inter-

specific spatial correlations are ignored.

The homogeneous Poisson Cluster Process provides a

simple, relatively realistic characterization of population

clustering (Plotkin et al. 2000). In nature, several processes

cause clusters to form. Dispersal limitation is among the

strongest, as illustrated in tropical forests by the high

correlation between cluster size (as measured by r) and a

species� mode of dispersal (Seidler & Plotkin 2006). The

spatial distribution of clusters depend mainly on environ-

mental heterogeneity (Plotkin et al. 2000; Seidler & Plotkin

2006) or secondary dispersal (Wiegand et al. 2007) and the

parsimonious assumption that clusters are randomly dis-

tributed with constant density q may not be accurate. The

degree to which the model fails in reproducing empirical

patterns in nature should yield insight into the importance

of incorporating heterogeneity into the Poisson Cluster

model.

In Appendix SC, we derive exact analytical expressions

for a species� occurrence probability w and spatial correla-

tion function W under the Poisson Cluster Process. From

eqn 2, we deduce the distance–decay relationship in a

landscape where aggregation is characterized by the homo-

geneous Poisson Cluster Process:

with

cðAÞ ¼ 1

lA

Z

X

ð1� expð�l
Z

A

hðu � sÞduÞds ð5Þ

and

Xðq;r; dÞ ¼ 1þ 1

4pqr2
expð� d 2

4r2
Þ: ð6Þ

Here, h is given by eqn 3 (u and s represent two-dimen-

sional coordinates in the landscape). c is a coefficient be-

tween 0 and 1 reflecting the deviation of the occurrence

probability w from that expected under random place-

ment. In Appendix SC, we derive the analytical link

between c and the parameter k of the negative binomial

distribution. Equation 4 provides the expression for the

distance–decay relationship when population aggregation is

characterized by the Poisson Cluster Process. The

denominator in eqn 4 provides the expression for the

species–area relationship.

E M P I R I C A L E V A L U A T I O N

We use data from three tropical forests to evaluate the

predictions outlined above. First, we examine the qualita-

tive predictions formulated in General framework, which

make no a priori assumptions about population clustering

or community dynamics. Second, we test the theoretical

predictions derived in Application: Poisson Cluster Process. We

test the accuracy of eqn 4 and the validity of the

homogeneous Poisson Cluster Process as a model of

clustering.

Data

The three forest plots are part of the Center for Tropical

Forest Studies network: Barro Colorado Island (Panama,

300 species), Yasuni National Park (Ecuador, 1132 species)

and Korup National Park (Cameroon, 494 species). Within

the 50-ha plot in Korup National Park and Barro Colorado

Island, and the 25-ha plot in Yasuni, every stem > 1cm at

breast height has been spatially mapped and identified to

species. Detailed description of the plots and references are

available on the CTFS web site http://www.ctfs.si.edu/

doc/plots.

vða; dÞ ¼
R
ð1� expð�ancðAÞÞÞð1� expð�ancðAÞXðq;r; d ÞÞÞnðn; q;rÞdndqdrR

ð1� expð�ancðAÞÞÞnðn; q;rÞdndqdr
ð4Þ
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General framework

To evaluate the general sampling formula (eqn 2) qualitative

predictions, we first examine empirical distance–decay

patterns in tropical forests using a sub-setting approach

similar to Nekola & White (1999). We divide species into

classes based on their landscape-scale abundance or degree

of population aggregation (aggregation is measured using

the W statistic in the 0–10 m distance class W0–10 following

Condit et al. (2000)). We then compare distance–decay

relationships among various subsets of the data (e.g. subsets

containing mostly dominant species or highly aggregated

species). Second, we compare distance–decay relationships

obtained in each forest with different sampling areas,

ranging from A = 0.0004 ha to A = 6.25 ha.

Similar results, consistent with our qualitative predictions,

are found in the three forests (see Fig. 3 for results in Korup,

and Appendix SD for results in BCI and Yasuni). The

distance–decay relationship is mainly driven by the most

abundant species in a forest, and is relatively insensitive to

the rare ones (Fig. 3a). The functional form of the distance–

decay relationship is largely controlled by population

aggregation (Fig. 3b). Finally, landscape-scale abundances

and sample area influence overall similarity, rather than the

rate of decay (Fig. 3c). Although these results are expected

from our qualitative predictions, two caveats are in order.

First, as we show below, the aggregation metric W0-10 is

correlated with landscape-scale abundance in these tropical

forests, making it difficult to infer the independent influence

of aggregation versus abundance in shaping the distance–

decay curves of subcommunities. Second, as illustrated in

Fig. 2, sample area and landscape-scale abundances could

have a stronger influence on the slope of the distance–decay

relationship in landscapes where the degree of aggregation is

higher than the forests studied here.

Application: Poisson Cluster Process

Here we test the accuracy of our analytical derivations (eqn 4)

using simulations, and the ability of the homogeneous

Poisson Cluster Process to reproduce distance–decay

relationships observed in nature. The homogeneous Poisson

cluster assumptions may not precisely reflect population

aggregation in the forests. BCI is a forest with relatively

homogeneous environment and many generalists, where

these assumptions are justified. Yasuni and Korup support

several habitat types that may influence species clustering

patterns in an inhomogeneous way. In Distance–decay

relationships, we evaluate the relevance of the Poisson Cluster

assumptions in the forests.

Clustering in tropical forests

We fit the Poisson Cluster Process to spatial point data for

each species in BCI, Korup and Yasuni (see Appendix SE

for parameter estimation details). Figures 4 and 5 reveal

important differences about population aggregation patterns

among the three forest plots. In Yasuni, conspecifics tend to

be grouped into small (Figs 4a and 5a) and numerous

(Figs 4b and 5b) clusters containing few individuals (Figs 4c

and 5c). This trend gets stronger as abundance increases. In

Korup, conspecifics tend to be grouped into large and

sparse clusters containing many individuals. These differ-

ences may be explained by differences in the ecology of each
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Figure 2 Conceptual figure illustrating the hypothetical influence

of landscape-scale abundances, sampling and population aggrega-

tion on the distance–decay relationship, as suggested by eqn 2. We

consider abundance n and sample area a in parallel because they are

expected to have the same effect on the distance–decay relation-

ship (community similarity at a given distance is a function of the

average number of individuals in a sample an). From left to right: with

comparable landscape-scale species abundances and sample area,

increased aggregation (steeper decays of W with distance) induces

steeper decays in community similarity and lower similarity values

at large distances. From bottom to top: with comparable aggregation,

increased landscape-scale abundances (or equivalently increased

sample areas), induce high overall similarity. Dashed lines: long

dashed lines reflect high aggregation, dotted lines reflect moderate

aggregation. In highly aggregated communities, the distance–decay
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boundaries of low and high similarity values.

Letter The distance–decay of ecological communities 909

� 2008 Blackwell Publishing Ltd/CNRS



0.0

0.2

0.4

0.6

0.8

1.0

Uniformity:
Less aggregated species only

100%

Aggregation:
Most aggregated species only

C
om

m
un

ity
 s

im
ila

rit
y

C
om

m
un

ity
 s

im
ila

rit
y

C
om

m
un

ity
 s

im
ila

rit
y

0.0

0.2

0.4

0.6

0.8

1.0 Dominance:(a)

(b)

(c)

Most abundant species only

Rarity:
Less abundant species only

50100 >Ω −

5100 <Ω −

10100 >Ω −

3100 >Ω −

n : Abundance of species considered
% : Fraction of species considered

 : Aggregation of species considered100−Ω
%    : Fraction of species considered

3%

21%

67%

84%

56%

33%

16%

Distance (m)

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Large sample size

Small sample size

A : sample area (ha)

n >1000

n > 5000

n > 500
n > 50

n < 5000

n < 1000 87%

55%

98%

21%

13%

2%

100%

2100 <Ω −

3100 <Ω −

2100 >Ω −

A = 6.25

A = 1

A = 0.25

A = 0.04

A = 0.01

A = 0.0025

A = 0.0004

Figure 3 Influence of landscape-scale abundance, population aggregation and sampling on the distance–decay relationship in Korup. (a) An

increasing proportion of the rarest (lines going up) or most abundant (lines going down) species are removed from the forest. Removing

species with fewer than 50 individuals corresponds to considering only 55% of the landscape-scale species pool, yet this removal has very little

effect on the relationship. At the other side of the spectrum, removing only 2% of the most abundant species substantially affects overall

similarity. (b) An increasing proportion of the most aggregated (lines going up) or least aggregated (lines going down) species is removed from

the forest. Only species with > 50 individuals are considered (Condit et al. 2000). (c) Sample area substantially influence rate of decays only at

the smallest sample area. In (a) and (b), distance–decay plots correspond to 20 · 20 m samples nested in the 50 ha plot (A = 0.04 ha,

a = 0.0008). See Appendix SD for similar results in BCI and Yasuni and log-linear plots emphasizing the effect of aggregation.

910 H. Morlon et al. Letter

� 2008 Blackwell Publishing Ltd/CNRS



site. Korup is divided into two distinct regions: one

steep ⁄ rocky ridge and one muddy ⁄ flat valley. Species tend

to specialize in one of the two terrains, forming few large

densely populated clumps (Fig. 4d). Environmental hetero-

geneity such as gullies, steep slopes, flats, wet and dry

sections within these terrains likely form nested clusters.

The Poisson Cluster Process, designed to characterize one

scale of aggregation only, may fail to detect the smaller

nested clumps. In Yasuni, valleys and ridges also constrain

the spatial repartition of flora, but they are narrower and less

dramatic than in Korup, the soil is more homogeneous, and

the species are more generalists (Valencia et al. 2004). As a

result, species typically have numerous small clusters

spanning the entire plot.

The correlation between clustering and abundance is

fundamental in shaping distance–decay curves. Understand-
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ing this correlation can also help in formulating hypotheses

on the origin of rarity in tropical tree communities (Hubbell

1979). There is no consensus on how aggregation scales

with abundance: positive (He et al. 1997), negative (Hubbell

1979; Condit et al. 2000) and insignificant (Plotkin et al.

2000) relationships have been proposed. The correlation

between aggregation and abundance depends on how

aggregation is quantified. Measuring aggregation in the

forests using the mean clump size r (Fig. 5a), we find a

weak correlation between aggregation and abundance,

consistent with Plotkin et al. (2000). Using the neighbour-

hood occurrence probability W0-10 (Fig. 5d), we find a

negative correlation between aggregation and abundance,

consistent with Condit et al. (2000). This disparity can be

understood from the expression for W under the Poisson

Cluster Process (eqn 6) (see Appendix SF for details). In

brief, W reflects both the size of clusters (r), which is

independent of abundance (Fig. 5a), and their density in the

landscape (q), which is correlated with abundance (Fig. 5b).

Analysing the three Poisson Cluster Process parameters

(r, q and l) in concert provides the most comprehensive view

of the abundance–aggregation relationship. A consequence of

the observed high correlation between q and n relevant to our

distance–decay analyses is that aggregation parameters in eqn

4 cannot be assumed invariant across species, thus justifying

the consideration of the joint distribution n(n, c).

Distance–decay relationships

Using the data parameterized above, we test eqn 4 and the

ability of the homogeneous Poisson Cluster Process to

reproduce distance–decay relationships. Figure 6 illustrates

the results obtained by sampling 25 · 25 m quadrats from
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the landscape. Results for a wider range of sampling areas

are presented in Appendix SF. To put our results in

context with previous studies (Plotkin et al. 2000), we also

examine species–area relationships. To test eqn 4, we

compare the predicted distance–decay and species area

curves to the mean and 95% confidence envelope obtained

by simulations of the process (see Appendices SE and SF

for details). We find that predictions and simulations agree,

with only a slight overestimation for community similarity

at small distances, showing that approximations made in

eqns 1 and 2 are relevant, and demonstrating the accuracy

of the framework and specific derivations under the

process.

To test the ability of the Poisson Cluster Process to

reproduce distance–decay and species–area relationships, we

compare the curves directly obtained from the raw data to

those predicted by eqn 4, and we use simulations to test for

the significance of the results (see Appendix SF for

statistical methods). Consistent with previous studies

(Plotkin et al. 2000), we find that the Poisson Cluster

Process accurately reproduces observed species–area rela-

tionships (P > 0.05). The accuracy of the Poisson Cluster

Process to reproduce observed distance–decay relationships

is less straightforward. The hypotheses that aggregation can

be modelled with the process is rejected in the three forests

(P < 0.05), except in Yasuni and BCI with 25 · 25 m

sample areas. The process tends to overestimate similarity

values in the forests for small sample areas, and to

underestimate them for larger sample areas (see Appendix

SF). In Yasuni and BCI the Poisson Cluster Process is

nevertheless a reasonable first approximation of clustering

patterns. In Korup, however, similarity values are largely
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overestimated at any distance-class and all but the

100 · 100 m sample area.

Korup appears to be an outlier: population aggregation in

this forest is not well characterized by the simple homo-

geneous Poisson Cluster Process. The inability of Poisson

Cluster Process to reproduce distance–decay relationships in

Korup probably lies in its inability to reproduce species�
spatial autocorrelation (decays of W with distance). The

species–area relationship, which does not reflect W, is well

reproduced by the process. Species� spatial autocorrelation

in Korup may be poorly reproduced as a result of species

having more than one scale of aggregation, as suggested by

the ecology of the site (see Clustering in tropical forests). The

shape of the distance–decay curve in Korup supports this

hypothesis: the curve is characterized by two distinct range

of distances where the decay is steeper (0 £ d £ 200 and

400 £ d £ 600), suggesting that two scales of aggregation

occur in this forest.

D I S C U S S I O N

The distance–decay relationship reflects how diversity is

spatially distributed and has consequences for conservation

and our general understanding of community assembly.

Interpreting this relationship and using it to test theories in

ecology requires understanding how patterns in the distri-

bution and abundance of species influence its shape. Our

general distance–decay framework provides a theoretical

foundation for addressing this need. The derivation under

the Poisson Cluster Process illustrates a specific application

of this general framework, and the efficiency of the

distance–decay relationship in falsifying theories.

General framework

Our distance–decay framework provides a theoretical

foundation for interpreting earlier analyses of beta-diversity

based on empirical and simulated data. Equation 1 shows

that the distance–decay curve follows from a weighted

combination of species-level neighbourhood occurrence

curves. This prediction is in agreement with neutral

theory predictions of a �compound� curvilinear distance–

decay curve (Hubbell 2001). Hubbell (2001) also proposed

that the initial steep decay of similarity at short distances

is induced by rare species, while the following shallow

decay is induced by more abundant ones. In contrast, our

results (eqn 3 and Fig. 3a) support the hypothesis that

rare species have a weak influence on the distance–decay

relationship. These results might be specific to the

incidence-based Sørensen index of similarity we consid-

ered in our study. However, Nekola & White (1999)

measured community similarity with the Jaccard index and

also found that removing the rare species in a landscape

(measured as species with low occurrence) does not affect

the slope of the relationship. We expect abundance-based

metrics to be even less sensitive to the rare species since

they give more weight to dominant species. The distance–

decay relationship should thus be robust to the potential

bias caused by sampling the most abundant species in a

landscape, as is common, for example, in microbial

ecology.

A central hypothesis stemming from our analyses is that

the slope of the distance–decay relationship alone is a poor

indicator of species spatial turnover (or b-diversity) and total

species richness in a landscape (or c-diversity). Understand-

ing how turnover in community composition across a

landscape relates to the rate of species gain with sampling

area has been the focus of many studies (Harte et al. 1999;

Lennon et al. 2001). It is commonly believed that a shallow

distance–decay slope reflects a low rate of species turnover,

leading to low diversity at large spatial scales. This idea was

formalized by Harte et al. (1999) in the context of self-

similarity and proposed as a means to estimate diversity at

large spatial scale from the sampling of small plots (Harte

et al. 1999; Green et al. 2004; Krishnamani et al. 2004). Our

results suggest that the slope of the distance–decay

relationship is a poor indicator of landscape-scale species

richness, complementing previous results showing that a

significant taxa–area relationship can hold even when the

distance–decay relationship is flat (Woodcock et al. 2006), or

that richness estimators based on the rate of decay in

similarity perform poorly (Jobe 2008). For example, Fig. 3a

shows that the slope of the distance–decay curve can be

conserved even when only a small fraction of the species is

considered. Figure 3b shows that the slope of the distance–

decay at small spatial scales is the steepest for highly

aggregated communities, also known to display the shal-

lowest species–area slopes at this scale (He & Legendre

2002). Finally, Fig. 6 shows that the most species rich forest

in our study (Yasuni), has the shallowest distance–decay

slope. We suggest that steep decays characterize communi-

ties where abundant species are highly aggregated rather

than communities with high spatial turnover, and that

b-diversity is better described by overall similarity than by

rates of decay. We support the idea that the focus on the

slope of the relationship (e.g. Qian et al. 2005; Qian &

Ricklefs 2007) must be expanded to include a focus on

intercepts and half-distances (Soininen & Hillebrand 2007),

or average similarity (Plotkin & Muller-Landau 2002).

Our analyses illustrate the superiority of the distance–

decay to the species–area relationship in testing spatial

ecology theories, and provide the analytical basis for

deriving expectations for this relationship under competing

ecological hypotheses. While species–area relationships can

be derived without precise information on species-level

spatial autocorrelation, we show that this information is
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crucial in shaping distance–decay curves (eqn 2), suggesting

that distance approaches are particularly informative of

spatial structure in ecological communities. Analytical

derivations for species-level spatial autocorrelations exist

under theories such as neutrality (in absence of speciation)

(Houchmandzadeh & Vallade 2003), self-similarity (Ostling

et al. 2000), multiscale or inhomogeneous point processes

(Diggle et al. 2007; Wiegand et al. 2007). These expectations

could be combined with our framework to predict the

community level distance–decay relationship expected under

different scenarios of spatial organization.

Poisson Cluster Process

Specific derivations under the Poisson Cluster may inform

future research aimed at understanding the role of dispersal

mechanisms in shaping the decay of similarity in ecological

communities. Nekola & White (1999) first noted that the

mode of dispersion influences distance–decay slopes, with

more vagile communities displaying a shallower decay.

Hubbell�s (2001) neutral theory predicts that dispersal

limitation and speciation alone can drive species turnover

in a homogeneous landscape. Finally, source-sink meta-

communities predict a decrease in beta-diversity with

increasing dispersal (Mouquet & Loreau 2003). The Poisson

Cluster Process is phenomenological, not mechanistic, and

should not be used as a model of community assembly (but

see Potts et al. 2004; John et al. 2007). However, the

parameter r reflecting the size of clusters is strikingly

correlated with the dispersal capacity of species (Seidler &

Plotkin 2006), and is incorporated explicitly in our expres-

sion for the distance–decay relationship (eqn 4). The

equation along with findings by Nekola & White (1999)

and neutral theory (Hubbell 2001; Chave & Leigh 2002)

suggests that strong dispersal limitation (small r values)

induces a steep decay in community similarity.

Combining distance–decay analyses to the Poisson

Cluster Process reveals limitations of this process as a

model of clustering that had not been previously demon-

strated. After it was shown that tropical tree populations are

spatially aggregated (Hubbell 1979; He et al. 1997; Condit

et al. 2000), Plotkin et al. (2000) proposed that randomly

distributed population clusters (i.e. the Poisson Cluster

Process) could be a good model of spatial organization and

showed that this model accurately reproduced species area

curves in 50 ha tropical forest plots, a result reproduced in

our study (Fig. 6). The comparison of the distance–decay

relationships observed in the forests to those produced by

the Poisson Cluster Process suggests that this process does

not universally reproduce clustering patterns. Several

assumptions underlying the homogeneous Poisson Cluster

Process are violated in natural systems. First, the Poisson

Cluster Process assumes one scale of aggregation only, while

ecological processes act at multiple spatial scales (e.g.

adaptation to a heterogeneous landscape, dispersal limita-

tion, intra- and inter- specific competition, facilitation and

localized pest pressure) to induce nested clustering (Levin

1992; Plotkin et al. 2002; Cornell et al. 2007; Scanlon et al.

2007; Wiegand et al. 2007). Second, the process assumes a

constant density of conspecifics across the landscape,

whereas abundances are known to vary widely across a

species� range (Brown et al. 1995). It is therefore not

surprising that the Poisson Cluster Process performs better

in a more homogeneous environment (e.g. BCI), or when

clumps span the landscape despite environmental hetero-

geneity (e.g. Yasuni), than when the density of trees is

inhomogeneously distributed in the landscape (e.g. Korup).

The limits of the Poisson Cluster Process outlined above

should not overshadow its utility, and the benefits gained

from merging this model with sampling theory. Although

the Poisson Cluster Process is not mechanistic and does not

always reproduce patterns accurately, considering this

process allowed us to develop theoretical basis for

introducing spatial statistics into b-diversity studies. This

approach could be extended to integrate processes across

spatial scales, which remains a major challenge in ecology.

To capture biodiversity patterns at both small and large

scales, the assumption of a constant density of individuals

over space, as specified by the homogeneous Poisson

Cluster Process, could be relaxed. One could consider an

inhomogeneous Poisson Cluster Process (Diggle et al. 2007),

allowing the intensity of the process to vary with environ-

mental variables, or to follow a �peak and tail� distribution

(McGill & Collins 2003) with population abundance

�hotspots� across the landscape. Considering the Poisson

Cluster Process allowed for the analytical derivation, in a

common framework, of two of the most widely studied

spatial biodiversity patterns in ecology. This first step

towards theoretically linking the increase of richness with

area and the decay of community similarity with distance

offers the promise of estimating diversity at large spatial

scale with feasible sampling effort.

C O N C L U S I O N

Our study illustrates the power of the distance–decay

relationship in falsifying models, and renders the relation-

ship analytically tractable, offering a promising framework

for testing theories in ecology. Theoretical ecology has

placed great emphasis on the species-abundance distribution

and species–area relationship, leaving the distance–decay

relationship largely ignored. Our analyses provide a unified

framework for systematic analysis of spatial biodiversity

patterns in relation to abundance and aggregation that may

inform future research aimed at understanding how

biodiversity is distributed and maintained.
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APPENDIX A. Symbol notations used in the distance-decay theoretical framework 

 
Symbol Definition 

0A  area of the landscape  

0S  total number of species in the 
landscape 

A area of a sample 
a 

sample fraction area =
0A

A  

n species landscape scale abundance 

γ set of parameters reflecting a species 
aggregation 

ξ joint distribution of species abundance 
and aggregation 

χ Sørensen index of similarity : fraction 
of species shared between two 
communities 

ψ occurrence probability: probablity that 
a species is present in a sample 

ψ* neighborhood occurrence probablity: 
probability that a species is present in 
a sample in the neighborhood of a 
conspecific 

Ω relative neighborhood density : 
density of individuals in an annulus 
around a conspecific normalized by 
the density of individuals in the 
landscape 

ρ density of clusters in the landscape 
under a Poisson Cluster Process 

σ  
2

πσ : mean clump radius 
2σ :variance of the Gaussian 

distribution under a Poisson Cluster 
Process 

μ average number of individuals per 
cluster under a Poisson Cluster 
Process 
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APPENDIX B. Derivations of the general sampling formula for the distance-decay 

relationship and related predictions 

 

B1. Generalization of Plotin & Muller Landau’s (2002) sampling formula of beta-

diversity (derivation of Equation 1) 

Consider two samples whose areas constitute proportions a and b, respectively, of a 

landscape. With the notations introduced in the manuscript, Plotkin & Muller-Landau’s 

formula for the expected fraction of species shared between two samples, also known as 

the classic incidence-based Sørensen index, takes the form (their Equation 10): 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

=

∫∫

∫
γγξγψγγξγψ

γγξγψγψ
χ

dndnnbddnnna

dndnnbna
ba

),(),,(),(),,(
2
1

),(),,(),,(
),(    [B.1] 

 

)|()(),( nnn γθφγξ = , where )(nφ is the landscape scale species abundance distribution, 

and )|( nγθ is the distribution of species clustering in the abundance class n. 

Alternatively, )|()(),( γφγθγξ nn = where )(γθ  is the distribution of species clustering 

and )|( γφ n is the distribution of abundances in the aggregation class γ. The integrals in 

the numerator and denominator of Equation B.1 are integrals with respect to both n and γ. 

The integral other n goes from 0 to ∞ . The boundaries with respect to γ depend on the 

measure chosen for aggregation. This formula assumes that samples are drawn from one 

landscape characterized by a single species-abundance distribution, but one could relax 
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this hypotheses and consider the joint distribution of abundances in multiple biomes or 

habitat types (Plotkin & Muller-Landau 2002). 

 

Equation B.1 provides the expected community similarity between any two samples 

randomly drawn from the landscape, regardless of their spatial location. To derive an 

expectation of the decay in similarity with geographic distance d, we introduce the 

“neighborhood occurrence probability”, ),,,(* dna γψ , defined as the probability, for a 

species with landscape-scale abundance n and aggregation parameter γ, that at least one 

conspecific occurs in a sample area constituting a fraction a of the landscape situated at a 

distance d from a focal individual. When the sample size a is small compared to the 

landscape, the neighborhood occurrence probability is equivalent to the probability that at 

least one conspecific occurs in sample area a situated at a distance d from a non-

overlapping sample of area a containing the species. 

  

The expected Sørensen similarity between two non-overlapping samples whose areas 

constitute proportion a of a landscape and separated by a distance d is thus given by: 

  

∫
∫=

γγξγψ

γγξγψγψ
χ

dndnna

dndndnana
da

),(),,(

),(),,,(*),,(
),(      [B.2] 

 

Equation B.2 will likely break down for large sample sizes, when the occurrence 

probability at a distance d from a sample cannot be approximated by the neighborhood 

occurrence probability ψ*. Equation B.2 shows that the shape of the decay curve is 
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principally the result of the compound shapes of the curves describing the decay of 

neighborhood occurrence probability with distance for each species, weighted by the 

species occurrence probability. Interspecific heterogeneity and multiple spatial scales of 

aggregation will likely cause the functional form of ψ* to vary widely between species 

and across geographic scales, making the distance decay relationship a compound of 

various curves with potentially different functional forms.  

 

B2. Relationship between the neighborhood occurrence probability ψ* and Ω 

(derivation of Equation 2)  

Here, we derive the relationship between a species’ neighborhood occurrence probability 

),,,(* dna γψ and a species’ occurrence probability ),,( γψ na , and the spatial 

autocorrelation function Ω(d). Recall that ),,,(* dna γψ  is the expected probability that a 

species with abundance n and aggregation parameters γ occurs in a sample a situated at a 

distance d from an arbitrary individual. Consider an annulus with inner radius d and area 

at a distance d around an individual, and a sampled region in the annulus whose 

area constitutes proportion a of the landscape . The fraction of annulus constituted by 

this sample is: 

)(dA

0A

)(
0

dA
A

a  , and, by definition of Ω(d), he number of individuals in the 

annulus is: 
0

)()(
A
dAdnΩ  . We make the reasonable assumption that clustering in the 

annulus can be modeled by the set of parameters γ that reflects clustering in the 

landscape. For a species with abundance n and set of aggregation parameters γ, the 

expected neighborhood occurrence probability in sample a at a distance d from an 

individual is given by: 
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),)()(,
)(

(),,,(*
0

0 γψγψ
A
dAdn

dA
A

adna Ω=       [B.3] 

 

If the occurrence probability is a function of the average number of individuals in a 

sample an (example: Poisson and negative binomial distribution, Poisson Cluster 

Process; counter-example: self-similarity), we can write: 

),(),,( γψγψ anna =  

and: 

)),,((),,,(* γγψγψ dandna Ω=        [B.4] 

Equation B.4  is intuitive: it shows that the probability that a species with abundance n 

and clustering γ is present in a sample area a at a distance d from a conspecific is 

equivalent to the probability that a species with abundance nΩ(d) and same clustering γ is 

present in a sample area a. It follows that: 

 

∫
∫ Ω

=
γγξγψ

γγξγγψγψ
χ

dndnan

dndndanan
da

),(),(

),()),,((),(
),(      [B.5]  

 

B3. General framework assumptions  

Equation B.2 (Equation 1 in the manuscript) makes the assumption that the probability of 

occurrence in a sample situated at a distance d from an occupied sample is equivalent to 

the probability of occurrence in a sample situated at a distance d from a conspecific (ψ*). 

This assumption requires that sample sizes are relatively small. 
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Equation B.4 (and thus Equation B.5 and Equation 2 in the manuscript) makes the 

assumption that the density of individuals in a sample area a situated at a distance d of an 

individual is constant in the sample. Therefore, Equation 4 assumes that a is sufficiently 

small relative to d. 

 

Hence, our derivations are expected to be valid for relatively small sample sizes and 

relatively large distances. In practice, distance-decay curves are commonly designed to 

study the spatial organization of community composition at large spatial scales, with 

small sample areas and wide geographic coverage. The accuracy of the equations is tested 

in Figure 6 in the manuscript and Appendix F below.  

 

B4. Other measures of conspecific spatial autocorrelation and their relationship to 

the neighborhood occurrence probability Ω 

Our derivations use the statistic Ω(d) to describe spatial autocorrelation. Here, we provide 

the exact analytical link between Ω(d) and two other measures of spatial autocorrelation: 

1) the correlation function ρ(d), defined as the probability that two individuals from a 

species are at a distance d from each other 2) the Ripley’s statistic K(d), defined as the 

number of individuals in a circle of  radius d, normalized by the density of individuals. 

 

Relationship between Ω(d) and ρ(d)  

Consider a species with total abundance n in a landscape of area A0. Consider annuli with 

inner radius d and area A(d) around each individual, and let  <n(d)> be the average 

number of individuals in those annuli. By definition:  
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0

)(
)(

)(
A

n
dA

dn
d

><

=Ω         [B.6]  

< n(d) > is given by:  ∑∑
= =

Δ+Δ−∈>=<
n

i

n

j
ddddjid

n
dn

1 1
]),[),((1)( δ  

Here δ is Dirac’s delta function ( 1)( =Bδ if statement B is true, 0 otherwise) 

By definition, 
p
dpd )()( =ρ  where p(d) is the number of pairs separated by a distance 

comprised between and dd Δ− dd Δ+ and p is the total number of pairs. 

 The total number of pairs p is given by 
2

)1( −
=

nnp  

p(d) is given by:  ∑∑
= =

Δ+Δ−∈=
n

i

n

j
ddddjiddp

1 1
],[),((

2
1)( δ  

Hence, ∑∑
= =

Δ+Δ−∈
−

=
n

i

n

j
ddddjid

nn
d

1 1
],[),((

)1(
1)( δρ  

And )()1()( dndn ρ−>=<  

Finally: 

0

)(
)()1(

)(
A

n
dA

dn
d

ρ−

=Ω         [B.7]  

 

Relationship between Ω(d) and K(d)  

Let  < N(d)  > be the average number of individuals in the circles of radius d surrounding 

each individual in the landscape, and let λ be the density of individuals in the landscape. 

By definition: ><= )(1)( dNdK
λ
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In the annulus delimitated by radii d1 and d2, by definition: 

)(
)()()( 2

1
2

2

12
2,1 dd

dNdNd
ππλ −

><−><
=Ω  

Thus: 
)(
)()()( 2

1
2

2

12
2,1 dd

dKdKd
−

−
=Ω

π
       [B.8] 

    

and 

)(
)()(lim)(lim)( 2

1
2

2

12
2,1 2121 dd

dKdKdd dddddd
−

−
=Ω=Ω =→=→ π

     

   

B5. General framework predictions 

To interpret Equation B.5 (Equation 2 in the manuscript), it may be more intuitive to 

consider its discrete equivalent: 

 

∑

∑

=

=

Ω
=

0

0

1

1

),(

),),((),(
),( S

i
ii

S

i
iiiii

an

ddanan
da

γψ

γψγψ
χ              [B.9] 

Here,  is the total number of species in the landscape, and i stands for species i.  0S

 

In a hypothetical community where all the species have same abundance n and 

aggregation γ, )),,((),( γγψχ danda Ω= , so that as a first approximation, the dependence 

of similarity on abundance, aggregation, and sampling should follow that of the 

neighborhood occurrence probability )),,(( γγψ danΩ . The distance-dependence of 

community similarity is entirely embedded in the distance-dependence of the 

neighborhood occurrence density )d,(γΩ  for each species (distance does not appear 
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anywhere else in the formula than in Ω, so that the functional form of the distance-

dependence of similarity is entirely determined by the functional form of the decay of 

),( dγΩ with distance. )),,(( γγψ danΩ  at large distances is a decreasing function of 

aggregation, so that more aggregated communities are expected to display lower 

similarity values at large distances. )),,(( γγψ danΩ at any distance increases with 

landscape-scale abundance n (or equivalently sample area a), so that high similarity 

values across the range of distances are expected when species have high landscape-scale 

abundances (or sampled with large sample areas), while low similarity values across the 

range of distances are expected when species have low landscape-scale abundances.  

  

In a hypothetical community where all the species have same landscape-scale abundance 

n and aggregation γ, the slope of the distance-decay relationship at a given distance is 

expected to vary as )),,( γγ('),( ψγ dΩan
d

dan
∂

Ω∂  (Here ψ’ is the derivate of ψ). ψ’ is  

expected to be a decreasing function, making it difficult to predict how the slope varies 

with an (the slope is a product of an increasing function and a decreasing function of the 

product an).  We would need to assume a functional form for ψ to assess the effect of 

sample area and landscape-scale abundances on the slope of the relationship. However, in 

the three tropical forests studied in the manuscript, results presented in the section 

Empirical Evaluation suggest that landscape-scale abundances and sample area have a 

weak influence on the rate of decay, except possibly for extreme values of landscape-

scale abundances or sample areas. 
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APPENDIX C. Poisson Cluster Process derivations 

 

Here, basing upon Cressie (1993), we derive a species occurrence probability 

),,( γψ na and Ω(d) under a Poisson Cluster Process with parameters ρ, σ and μ and 

bivariate Gaussian Kernel h. 

 

C1. Occurrence probability 

Let N be any point process on space X. The probability generating function of N is 

defined by: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

≡ ∫
X

N dsNsEG )()(logexp)( ωω  

Where ω is any function  ]1,0[→X

Let t be any real number, , andXx ∈ )()1(1)( Axtxt ∈−−= δω   

 )( )( ANt)(ds
⎥
⎥
⎦

⎤

⎭
⎬
⎫

logexp)(
A

tN EtNEG =
⎢
⎢
⎣

⎡

⎩
⎨
⎧

≡ ∫ω

Therefore,  )( tNGt ω→  is the generating function of  )(AN

And 0|)()0)(( === ttNGANP ω  

The occurrence probability in A is: 

0|)(1)0)((1),,,( =−==−= ttNGANPna ωσρψ      [C.1]  

The probability generation function of the Poisson Cluster Process defined in the 

manuscript is (directly derived from Cressie 1993): 
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⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

+−−= ∫ ∫ dsduuhsuG
X X

N )()(1exp)( ωηρω                [C.2] 

Where η is the probability generating function of the number of events per cluster.  

With )()1(1)( Axtxt ∈−−= δω  

∫∫∫ −=+
X

t uhuduuhsu ()()() ω∫ −+−=
AAX

t dusuhtdusuhdus )()()(ω  

Equation C.2 gives the generating function of : )(AN

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−−−= ∫ ∫∫ dsdusuhtdusuhG
X AA

tN )()(1exp)( ηρω  

For any s in X: 1)()()( =−=−+− ∫∫∫
XAA

dusuhdusuhdusuh  

Thus,   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−+−−= ∫ ∫
X A

tN dsdusuhtG )()1(11exp)( ηρω

The number of offspring per parent is Poisson-distributed with mean μ, so that: 

))1(exp()( −= tt μη  

and  ))()1(exp()()1(1 ∫∫ −−=
⎭
⎬
⎫

⎩
⎨
⎧

−−+
AA

dusuhtdusuht μη

Thus,  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−−−= ∫ ∫ dsdusuhtG

X A
tN ))()1(exp(1exp)( μρω

And from Equation C.1 we obtain the expression of the occurrence probability in a patch 

under a Poisson Cluster Process: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−= ∫ ∫ dsdusuhna

X A

))(exp(1exp1),,,( μρσρψ   
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With 0An ρμ= , we find that the occurrence probability in a sample of area A for a 

species’ with abundance n and parameters ρ and σ is given by:    

[ )(exp1),,,( Aancna −−= ]σρψ        [C.3] 

With: 

dsdusuh
A

Ac
X A
∫ ∫ −−−= ))(exp(1(1)( μ

μ
.      [C.4] 

The coefficient c(A) ranges between 0 and 1 and reflects clustering at sample scale A. It 

depends on σ and the number μ of individuals per cluster. The integral ∫  

measures the probability that a “parent” with coordinate s gives rise to an “offspring” in 

sample A.     

−
A

dusuh )(

C2. Omega statistic 

The derivation of Ripley’s K statistic under the Poisson Cluster Process is known 

(Cressie 1993; Plotkin et al. 2000): 

))4/exp(1(1)( 222 σ
ρ

π dddK −−+=       [C.5] 

Combining Equation B.8 and Equation C.5 gives: 

]
)

4
exp()

4
exp(

[11)( 2
1

2
2

2

2
1

2

2
2

2,1 dd

dd

d
−

−−−
−=Ω σσ

πρ
 

Writing , we find: 2dD =

]
)

4
exp()

4
exp(

[11)(
12

2
1

2
2

2,1 DD

DD

D
−

−−−
−=Ω σσ

πρ
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)(lim)( 2,121
DD DDD Ω=Ω =→  

)('
)

4
exp()

4
exp(

lim
12

2
1

2
2

21
Df

DD

DD

DDD =
−

−−−
=→

σσ with )
4

exp()( 2σ
xxf −=  

)
4

exp(
4

1)(' 22 σσ
xxf −−=  

So that )
4

exp(
4

11)( 22 σπρσ
DD −+=Ω  

And finally: 

)
4

exp(
4

11)( 2

2

2 σπρσ
dd −+=Ω        [C.6] 

Combining Equation 2 in the manuscript with Equation C.3 and Equation C.6 lead to the 

derivation for the distance-decay relationship under the Poisson Cluster Process 

(Equations 4 to 6 in the manuscript): 

∫
∫

−−

Ω−−−−
=

σρσρξ

σρσρξσρ
χ

ddndnAanc

ddndndAancAanc
da

),,()))(exp(1(

),,())),,()(exp(1)))((exp(1(
),(  [C.7] 

with  dsdusuh
A

Ac
X A
∫ ∫ −−−= ))(exp(1(1)( μ

μ
      

and )
4

exp(
4

11),,( 2

2

2 σπρσ
σρ dd −+=Ω         

 

C3. Relationship between Poisson Cluster Process coefficient of aggregation c and 

negative binomial clustering parameter k 

The probability that a species with landscape-scale abundance n occurs in a sample which 

area constitutes a fraction a of the landscape is given by: 
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For the negative binomial distribution with parameter k: 

k

k
anna −+−= )1(1),(ψ   

For the Poisson cluster process: 

)exp(1),( ancna −−=ψ  

It follows: )exp()1( anc
k
an k −=+ −  

anc
k
ank −=+− )1ln(  

And finally: 

 )1ln(
k
an

an
kc +=           [C.8] 

Equation C.8 provides the exact analytical link between c and k. 



 15

APPENDIX D. Figures relevant to empirical evaluation of Qualitative predictions in 

BCI, Yasuni and Korup 

Figure D1. Empirical evaluation in BCI 
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Figure D2. Empirical evaluation in Yasuni 
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Figure D3. Linear-log plots emphasizing the importance of aggregation in shaping 

the distance-decay relationship in Korup 
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APPENDIX E. Estimation and distribution of Poisson Cluster Process parameters 

All methods presented here are derived from Cressie (1993), Plotkin (2000) and Diggle 

(2003).  

 

E1. Estimation of Poisson Cluster Process parameters  

For each species in a forest, we first estimated the parameters ρ and σ as described below, 

and then deduced the parameter μ from the relationship 0An ρμ= . For reasons explained 

below, we treated differently species with less or more than 20 individuals in the plot. 

Species with more than twenty individuals represented 63% of the pool of species in 

Yasuni, 72% in BCI, and 66% in Korup.    

 

a) For species with more than 20 individuals in the plot, the parameters ρ and σ were 

estimated by best-fit of the observed Ripley’s K curve  to the 

expected , where

)(),...,( max1 dKdK

)(),...,( max1 dKdK PCPPCP ))4/exp(1 22 σd−−(1)( 2

ρ
πddK PCP += .  

The best fit was found by minimizing the integral  with 

, based on Plotkin et al. (2000). Following Plotkin et al. (2000), dmax was chosen 

based on the observation of the curves describing Pd-Prand, where Pd is the proportion of 

trees in the plot, distance d apart, which are the same species, and Prand is the expected 

value of Pd under random placement. These curves suggested choosing 200 ≤ dmax ≤ 400. 

We performed all analyses (fitting the parameters of the Poisson Cluster Process and 

calculating the corresponding distance-decay relationships), for dmax= 200, dmax = 300, 

and dmax = 400. Choosing a different value for dmax did not change the resulting distance-

∫ −
max

0

2)))(()((
d

cPCPc dhhKhK

25.0=c
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decay curves significantly, and we reported in the manuscript results obtained with the 

intermediate value dmax = 300. However, we do not exclude the possibility that the fit of 

the Poisson Cluster parameters with dmax chosen specifically species by species would 

improve the community level fit of the distance-decay.  

 

b) When the spatial distribution of species is close to random, the value of the estimated 

parameters can be unrealistic. When we found a value for mean cluster diameter larger 

than the length of the plot, we set this value to the length of the plot. When we found 

more clusters than individuals in the plot, we set the number of clusters to the number of 

individuals in the plot. These arbitrary values were designed to reproduce the random 

distribution of the species and are not expected to influence our results. Reasonable 

parameter estimations were found for 74% of the species with more than 20 individuals 

in Yasuni, 91% in BCI and 95% in Korup. In Figures 4 and 5 in the manuscript, we 

consider theses species only. 

 

c) We consistently observed across forests that, for a high proportion of species with less 

than 20 individuals, fitting Ripley’s K curve did not lead to a realistic estimation of the 

parameters. We therefore arbitrarily chose n = 20 as a cut-off above which we did not use 

the statistical estimation technique described above. Instead, we estimated the parameters 

for rare species using those estimated in a) for species with more than 20 individuals and 

realistic parameter values. We assigned ρ and σ values to species with less than 20 

individuals based on the log-log regression between ρ and n and the log-log regression 

between σ and n (Figure 5 in the manuscript). Log-log regressions were suggested by the 
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log-normal shape of the parameters distributions (Figures 4 and 6). This estimation for 

rare species is rough and concerns a high fraction of the species in the plot. However, the 

rare species are not expected to influence distance-decay relationships strongly (Figure 3 

in the paper and Appendix D). We tested the possibility that the bad fit of the Poisson 

Cluster Process distance-decay relationship in Korup to the observed curve results from a 

bad estimation of the Poisson Cluster Process parameters for rare species. We performed 

in Korup distance-decay analyses similar to those presented in Figure 6 but excluding the 

rare species and found, consistently with Figure 6, that the curves obtained with the 

Poisson Cluster Process did not fit the observed curves. .  
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E2. Distributions of mean clump radius on a linear-linear scale 
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APPENDIX F. Supplementary information relevant to “Empirical evaluation” 

 

F1. Comparing measures of aggregation  

 

Intuitive interpretation of c 

c(A) is a coefficient ranging between 0 and 1 that controls the deviation of the occurrence 

probability from the one expected under random placement (ψ an( )=1− e−an ). Values of 

c(A) close to 0 correspond to high clustering. Values of c(A) close to 1 correspond to 

random placement. Intuitively, the number of individuals in a population should be 

multiplied by 
)(

1
Ac

 to obtain an occurrence probability corresponding to random 

placement. c(A)  is scale dependent, and depends on μ and σ only: 

dsdusuh
A

Ac
X A
∫ ∫ −−−= ))(exp(1(1)( μ

μ
 

For σ constant, aggregation increases (according to c) if and only if the density of 

individuals per cluster  μ increases. 

 

Intuitive interpretation of Ω 

Ω is a decreasing function of distance that reflects the deviation of the neighborhood 

occurrence probability from the occurrence probability. High values of Ω at small 

distances and steep decays of Ω correspond to high clustering. Under random placement, 

Ω is equal to 1 at any distance. Intuitively, Ω measures the effect of being close to a 

conspecific. It depends on ρ and σ only: 
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)
4

exp(
4

11),,( 2

2

2 σπρσ
σρ dd −+=Ω  

At constant σ, aggregation decreases (according to Ω) if and only if the density of clusters 

increases. Note that, despite the fact that Ω is designed to investigate local densities 

around conspecifics, it is independent of the number of individuals per cluster (μ). Note 

also that Ω values in adjacent distance classes are highly correlated (Condit et al. 2000), 

justifying measuring Ω values in the arbitrary 0-10 m class. This choice is not expected to 

influence our results.  

  

When abundance increases, both the number of clusters and the number of individuals 

per cluster increase (Figure 5 in the paper). The increase in number of clusters tends to 

reduce aggregation, while the increase in number of individuals per cluster tends to 

increase aggregation. σ, Ω and c emphasize different aspects of aggregation (size, number 

or density of clusters), each of which scale differently with abundance.  

 

F2. Testing Equation 4 against simulations and the Poisson Cluster Process against 

data 

Simulating the Poisson Cluster Process in each forest 

Once the parameters ρ and σ are estimated for each species in a forest, the Poisson 

Cluster equivalent of the forest is obtained by overlaying each independently simulated 

species. To avoid edge effects, each species is simulated according to the Poisson Cluster 

in a larger area surrounding the actual plot, corresponding here to a 750 hectare plot 

surrounding the 50 hectare plot in Korup and BCI and the 25 hectare plot in Yasuni. We 

tested that increasing the area surrounding the plots did not influence the results. 
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Testing the Poisson Cluster Process against data 

Discrete equivalent of Equation 4 

To compute expected Poisson Cluster Process similarity values (Eq. 4) against data, we  

worked with the discrete equivalent of Equation 4, which reads:   

∑

∑

=

=

−−

Ω−−−−
=

0

0

1

1

)))(exp(1(

))),,()(exp(1)))((exp(1(
),( S

i
ii

S

i
iiiii

Acan

dAcanAcan
da

σρ
χ    [F.1] 

with  

dsdusuh
A

Ac
X A

ii
i

i ∫ ∫ −−−= ))(exp(1(1)( μ
μ
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2
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The discrete equivalent for the species-area relationship is given by the denominator of 

Equation F2.1 

  

Expectation of Sørensen similarity under random placement 

Expectations under random placement were computed using Plotkin & Muller-Landau’s 

(2002) sampling formula: under random placement, ψψ =*  at any distance (or 

equivalently at any distance), and 1)( =Ω d χ is equal to the average similarity across the 

landscape at any distance. The discrete equivalent of equation B.1 reads, for : ba =

∑

∑

=

==
0

0

1

1

2

),(

),(
)( S

i
ii

S

i
ii

an

an
a

γψ

γψ
χ  

Under random placement: )exp(1),( iii anan −−=γψ  
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and: 

 

∑

∑

=

=

−−

−−
=

0

0

1

1

2

))exp(1(

))exp(1(
)( S

i
i

S

i
i

an

an
aχ         [F.2] 

 

Species-area and distance-decay relationship 95% confidence intervals  

The 95% confidence intervals of the species-area and distance-decay relationships are 

obtained by Monte-Carlo simulations of Poisson Cluster Process communities. The 95% 

confidence envelop is composed of the 38 out of 40 intermediate values obtained by 

simulations at each area (species area relationship) or distance class (distance-decay 

relationship). 

 

Test of Poisson Cluster Process hypotheses and sensitivity analyses 

We test, for each forest, the null hypothesis H0 that population aggregation can be 

characterized by the Poisson Cluster Process, using both species-area and distance-decay 

curves. Below, we describe this test for the distance-decay relationship. The approach for 

species-area curves is similar, replacing community similarity by species richness, and 

distances by areas. 

   

We use a test inspired from spatial statistics (Diggle 2003; Green et al. 2003): we 

measure the deviation of the observed similarity values from the theoretical expectations 

under the Poisson Cluster Process, using: 

kobserved = [χobserved (di) − χ predicted (di)]
2

i
∑  



 26

where )( idχ is the average similarity in distance-class i.  

We also measure, for 40 simulated communities, the deviation of the similarity values 

from the theoretical expectations under the Poisson Cluster Process, using: 

ksimulated = [χ simulated (di) − χ predicted (di)]
2

i
∑ . 

The null hypotheses H0 that a distance-decay curve arise form the Poisson Cluster 

Process is rejected at the 5% level confidence if  for at least 38 out of 

the 40 simulations.  

simulatedobserved kk >

 

With these criteria, H0 is not rejected with the species-area relationship in any of the 

forests. It is rejected in all three forests with the distance-decay relationship, except in 

Yasuni and BCI for the 25  × 25 meter sample size. 
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Figure F1.  Comparison of theory with data in Yasuni, BCI, and Korup for different 

sample sizes 

Thick solid lines represent observed curves. Thin solid lines represent curves predicted 

by the Poisson Cluster Process (Eq. F.1 above). Thin dotted lines represent 95% 

confidence intervals produced by simulation of the Poisson Cluster Process. Dashed lines 

represent curves predicted from the species abundance distribution in each forest 

assuming random placement (Eq. F.2 above). The Poisson Cluster Process improves 

predictions under random placement in the three forests, and offers a good first 

approximation in Yasuni and BCI. The process tends to overestimate similarity values in 

the forests for small sample sizes, and to underestimate them for larger sample sizes. In 

Korup, the Poisson Cluster Process fails to reproduce the shape of observed distance-

decay curves, and largely overestimate similarity values, particularly for the smallest 

sample sizes. 
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Figure F1. 
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