Accèder directement au contenu test

DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis

Amr Nassrallah, Martin Rougée, Clara Bourbousse, [...] Chris Bowler, Vicente Rubio, Fredy Barneche.

Amr Nassrallah, Martin Rougée, Clara Bourbousse, Stephanie Drevensek, Sandra Fonseca, Elisa Iniesto, Ouardia Ait-Mohamed, Anne-Flore Deton-Cabanillas, Gerald Zabulon, Ikhlak Ahmed, David Stroebel, Vanessa Masson, Berangere Lombard, Dominique Eeckhout, Kris Gevaert, Damarys Loew, Auguste Genovesio, Cecile Breyton, Geert de Jaeger, Chris Bowler, Vicente Rubio, Fredy Barneche.

Abstract

DE-ETIOLATED 1 (DET1) is an evolutionarily conserved component of the ubiquitination machinery that mediates the destabilization of key regulators of cell differentiation and proliferation in multicellular organisms. In this study, we provide evidence from Arabidopsis that DET1 is essential for the regulation of histone H2B monoubiquitination (H2Bub) over most genes by controlling the stability of a deubiquitination module (DUBm). In contrast with yeast and metazoan DUB modules that are associated with the large SAGA complex, the Arabidopsis DUBm only comprises three proteins (hereafter named SGF11, ENY2 and UBP22) and appears to act independently as a major H2Bub deubiquitinase activity. Our study further unveils that DET1-DDB1-Associated-1 (DDA1) protein interacts with SGF11 in vivo, linking the DET1 complex to light-dependent ubiquitin-mediated proteolytic degradation of the DUBm. Collectively, these findings uncover a signaling path controlling DUBm availability, potentially adjusting H2Bub turnover capacity to the cell transcriptional status.

More information


eLife 2018 ;7 : e37892 doi : 10.7554/eLife.37892