Skip to main content
23 September

Guillaume Oller Roles of embryonic microglia on forebrain wiring in the mouse

13h30 à 15h30

La soutenance de thèse de Guillaume Oller aura lieu dans la salle Favard, IBENS 46 rue d’Ulm 75005 Paris

ABSTRACT
Brain functioning relies on complex neural circuits that are built during embryogenesis and defects in this process can lead to neurologic or psychiatric disorders. Microglia are the brain resident macrophages, which respond to inflammation and infection by active phagocytosis and secretion of various molecules. In addition to these immune-related functions, microglia were recently involved in the onset of several neuropsychiatric
disorders, as well as in postnatal neuronal plasticity, notably through the phagocytosis of developing neurons and synapses. Since microglia colonize the brain during early embryogenesis, they might also participate to the elaboration of neural networks. Here, we reveal that embryonic microglia, via a heterogeneous localization, are modulators of forebrain wiring. Using a cross-comparative analysis of phenotypes induced by either
an absence or a perturbation of microglia activity, we showed that microglia directly regulate interneuron positioning as well as dopaminergic axons outgrowth. Moreover, microglia are involved in the formation of another tract, the external capsule. Having observed a strong association between microglia and axons, we combined ex vivo and in vivo approaches in order to decipher whether microglia could act by means of phagocytosis. Despite showing some clear morphological features of intense phagocytosis, our results suggest that microglia do not perform active phagocytosis of axons in vivo. Thus, the phagocytic activity of embryonic microglia by itself is unlikely to explain their role on axonal progression. This study shows for the first time an early prenatal role for microglia and reveal a novel interplay between the central and nervous
systems during embryonic development.